PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of optical detection strategies for transabdominal fetal heart rate detection using three-layered tissue model and Monte Carlo simulation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the Monte Carlo technique is used to determine the optical detection strategies in three-layered (maternal, amniotic fluid and fetal) tissue model. This model is utilized to estimate the transabdominal optical power and optimum source-detector (S-D) separation. Results based on the launching of 2 million photons with 1 mW optical power showed that the expected optical power output is in the range of 10-6-10-10 W/cm2 depending on S-D separation. Considering the limit of the signal processing methods (such as adaptive noise cancelling) and the use of silicon photodetector, an S-D separation of 4 cm has been selected as a practical compromise between signal level and percentage of optical power (70%) coming from the fetal layer. Based on these findings, transabdominal fetal heart rate detection system using NIR and adaptive filtering can be designed and developed.
Czasopismo
Rocznik
Strony
885--896
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
  • Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
Bibliografia
  • [1] SINICHKIN Y.P., KOLLIAS N., ZONIOS G.I., UTZ S.R., TUCHIN V.V., Reflectance and fluorescence spectroscopy of human skin in vivo, [In] Handbook of Optical Biomedical Diagnostics, Vol. PM107,SPIE Press, Washington, 2002, pp. 727–785
  • [2] BOAS D.A., BROOKS D.H., MILLER E.L., DIMARZIO C.A., KILMER M., GAUDETTE R.J., ZHANG Q.,Imaging the body with diffuse optical tomography, IEEE Signal Processing Magazine 18(6), 2001,pp. 57–75.
  • [3] VO-DINH T., Biomedical Photonics Handbook, CRC Press, Florida, 2003.
  • [4] RAMANUJAM N., VISHNOI G., HIELSCHER A.H., RODE M.E., FOROUZAN I., CHANCE B., Photon migration through the fetal head in utero using continuous wave, near infrared spectroscopy: Clinical and experimental model studies, Journal of Biomedical Optics 5(2), 2000, p. 173.
  • [5] CHOE R., DURDURAN T., YU G., NIJLAND M.J.M., CHANCE B., YODH A.G., RAMANUJAM N., Transabdominal near infrared oximetry of hypoxic stress in fetal sheep brain in utero, Proceedings of the National Academy of Sciences 100(22), 2003, pp. 12950–12954.
  • [6] NIOKA S., IZZETOGLU M., MAWN T., NIJLAND M.J., BOAS D., CHANCE B., Fetal transabdominal pulse oximeter studies using a hypoxic sheep model, The Journal of Maternal-Fetal and Neonatal Medicine 17(6), 2005, pp. 393–399.
  • [7] CHANCE B., Transabdominal Examination Monitoring and Imaging of Tissue, U.S. Patent 2005/0038344A1, 2005.
  • [8] VINTZILEOS A.M., NIOKA S., LAKE M., PENGCHENG LI, QINGMING LUO, CHANCE B., Transabdominal fetal pulse oximetry using near-infrared spectroscopy, American Journal of Obstetric and Gynaecology 192(1), 2005, pp. 129–133.
  • [9] ZOURABIAN A., SIEGEL A., CHANCE B., RAMANUJAM N., RODE M., BOAS D.A., Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry, Journal of Biomedical Optics 5(4), 2000, pp. 391–405.
  • [10] ZAHEDI E., BENG G.K., Applicability of adaptive noise cancellation to fetal heart rate detection using photoplesthysmography, Computers in Biology and Medicine 38(1), 2008, pp. 31–41.
  • [11] GAN K.B., ZAHEDI E., ALI M.A.M., Trans-abdominal fetal heart rate detection using NIR photopleythysmography: Instrumentation and clinical results, IEEE Transactions on Biomedical Engineering 56(8), 2009, pp. 2075–2082.
  • [12] WANG L., JACQUES S.L., ZHENG L., MCML – Monte Carlo modeling of light transport in multi-layered tissues, Computer Methods and Programs in Biomedicine 47(2), 1995, pp. 131–46.
  • [13] Lambda Research Corporation, TracePro Software for Opto-Mechanical Modeling: The Closest Thing to Working at the Speed of Light, http://www.lambdares.com/products/tracepro/index.phtml,
  • [14] BRONZINO J.D., The Biomedical Engineering Handbook, Vol. 1, CRC Press LLC, Florida, 2000.
  • [15] LOUNSBURY K.L., Anatomical Model, U.S. Patent 5104328, 1992.
  • [16] JACQUES S.L., RAMANUJAM N., VISHNOI G., CHOE R., CHANCE B., Modeling photon transport in transabdominal fetal oximetry, Journal of Biomedical Optics 5(3), 2000, pp. 277–282.
  • [17] REUSS J.L., Arterial pulsatility and the modeling of reflectance pulse oximetry, Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, 2003,pp. 2791–2794.
  • [18] RICHARDS D.S., ALLEN S.G., WHITE M.A., PEREZ D.R., Umbilical vessels: Visualization,Department of Obstetrics and Gynecology, University of Florida College of Medicine, 1992, http://www.thefetus.net, (accessed September 12, 2005).
  • [19] MANNHEIMER P.D., CASCIANI J.R., FEIN M.E., NIERLICH S.L., Wavelength selection for low-saturation pulse oximetry, IEEE Transactions on Biomedical Engineering 44(3), 1997, pp. 148–158.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0019-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.