Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rapid development of analytical microsystems, also often called as labs-on-a-chip and used to perform various chemical and biochemical analysis with nano- and pico-volumes of the sample, has been observed for almost two decades. Successful application of analytical microsystems in medical and veterinary practices is relevant to many factors but one of them is low price of the disposable microsystem - often in the form of a chip. The chips are made of cheap materials, for example, polymers. One of such material is a negative photoresist SU-8. It is characterized by biocompatibility and possibility of easy fabrication of various three-dimensional fluidic microstructures. Moreover, SU-8 is transparent for visible light. It makes SU-8 attractive material for labs-on-a-chip dedicated for genetic material analysis by real-time polymerase chain reaction (PCR). In this paper, we present the results of investigations of the influence of PCR-like temperature profiling on the transmittance spectra. The autofluorescence effect of SU-8 illuminated with various lasers has also been investigated as one of the factors limiting sensitive fluorescence readout. The results obtained showed that SU-8 can be successfully applied as labs-on-a-chip material but, due to high SU-8 autofluorescence, red-line fluorochromes are preferred when high-sensitivity fluorescence detection is required.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
873--884
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
autor
autor
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
- [1] Yole Development, MEMS Market 2010 Report.
- [2] FERRARI M., Biomems and Biomedical Nanotechnology, Springer, 2006.
- [3] TIAN W.-CH., Microfluidics for Biological Applications, Springer, 2008.
- [4] NGUYEN N.-T., WERELEY S.T., Fundamentals and Applications of Microfluidics, Artech House, 2006.
- [5] MINTER S.D., Microfluidic Techniques, Reviews and Protocols, Humana Press, 2006.
- [6] MALEK CH., SU8 resits for low-cost X-ray patterning of high-resolution, high-aspect-ratio MEMS, Microelectronics Journal 33(1–2), 2002, pp. 101–105.
- [7] LIU G., TIAN Y., KAN Y., Fabrication of high-aspect-ratio microstructures using SU8 photoresist, Microsystem Technologies 11(4–5), 2005, pp. 343–346.
- [8] VOSKERICIAN G., SHIVE M.S., SHAWGO R.S., VON RECUM H., ANDERSON J.M., CIMA M.J., LANGER R., Biocomaptibility and biofouling of MEMS delivery devices, Biomaterials 24(11), 2003, pp. 1959–1967.
- [9] CHRISTENSEN T.B., PEDERSEN C.M., GRÖNDHAL K.G., JENSEN T.G., SEKULOVIC A., BANG D.D.,WOLFF A., PCR biocompatibility of lab-on-a-chip and MEMS materials, Journal of Micromechanics and Microengineering 17(8), 2007, pp. 1527–1532.
- [10] SVASEK P., SVASEK E., LENDL B., VELLEKOOP M., Fabrication of miniaturized fluidic devices using SU-8 based litography and low temperature wafer bonding, Sensors and Actuators A: Physical 115(2–3), 2004, pp. 591–599.
- [11] LUNG-JIEH YANG, YU-TANG CHEN, SHUNG-WEN KANG, YI-CHUNG WANG, Fabrication of SU-8 embedded microchannels with circular cross-section, International Journal of Machine Tools and Manufacture 44(10), 2004, pp. 1109–1114.
- [12] KOLTAY P., STEGER R., BOHL B., ZENGERLE R., The dispensing well plate: A novel nanodispenser for the multiparallel delivery of liquids (DWP Part I), Sensors and Actuators A: Physical 116(3), 2004, pp. 483–491.
- [13] NAN-CHYUAN TSAI, CHUNG-YANG SUE, SU-8 based continuous-flow RT-PCR bio-chips under high--precision temperature control, Biosensors and Bioelectronics 22(2), 2006, pp. 313–317.
- [14] REN YANG, WANJUN WANG, Out-of-plane polymer refractive microlens fabricated based on direct litography of SU-8, Sensors and Actuators A: Physical 113(1), 2004, pp. 71–77.
- [15] LEEDS A.R., VAN KEUREN E.R., DURST M.E., SCHNEIDER T.W., CURRIE, J.F., PARANJAPE M.,Integration of microfluidic and microoptical elements using a single-mask photolitographic step, Sensors and Actuators A: Physical 115(2–3), 2004, pp. 571–580.
- [16] BECHE B., PELLETIER N., GAVIOT E., ZYSS J., Single-mode TE00–TM00 optical waveguides on SU-8 polymer, Optics Communications 230(1–3), 2004, pp. 91–94.
- [17] SHIH-HAO HUANG, FAN-GANG TSENG, Development of a monolithic total internal reflection-based biochip utilizing a microprism array for fluorescence sensing, Journal of Micromechanics and Microengineering 15(12), 2005, pp. 2235–2242.
- [18] AB-RAHMAN M.S., AB-AZIZ F., MOHD ARIF N.A.A., ZAN S.D., MUSTAZA S.M., EHSAN A.A.,SHAARI S., The study of the good polishing method for polymer SU-8 waveguide, Optica Apllicata 39(3), 2009, pp. pp. 459–465.
- [19] WALCZAK R., DZIUBAN J., KOSZUR J., BANG D.D., RUANO-LOPEZ J., Miniaturowy system do prowadzenia reakcji PCR czasu rzeczywistego do taniego i masowego wykrywania patogenów żywności, Elektronika, 6/2008, pp. 242–244, (in Polish).
- [20] GWO-BIN LEE, CHE-HSIN LIN, GUAN-LIANG CHANG, Micro flow cytometers with burried SU-8/SOG optical waveguides, Sensors and Actuators A: Physical 103(1–2), 2003, pp. 165–170.
- [21] AGIRREGABIRIA M., OLABARRIA G., VERDOY L., TIJERO M., BERGANZO J., FERNANDEZ L.J., MAYORA K.,RUANO-LÓPEZ J.M., Concentration, lysis and real-time PCR on SU-8 lab on a chip for rapid detection of Salmonella spp. in feaces, Proceedings of μTAS 2007, Paris, France, pp. 584–586.
- [22] WALCZAK R., Lab-on-a-chip fluorescence detection with image sensor and software-based image conditioning, Bulleting of Polish Academy of Sciences – Technical Sciences, 2011, (in press).
- [23] MOGENSEN K.B., KUTTER J.P., Optical detection in microfluidic systems, Electrophoresis 30(S1),2009, pp. S92–S100.
- [24] RUANO-LOPEZ J.M., AGUIRREGABIRIA M., TIJERO M., ARROYO M., ELIZALDE J., BERGANZO J.,ARANBURU J., BLANCO F.J., MAYORA K., A new SU-8 process to integrate buried waveguides and sealed microchannels for a lab-on-a-chip, Sensors and Actuators B: Chemical 114(1), 2006,pp. 542–551.
- [25] PIRUSKA A., NIKCEVIC I., SE HWAN LEE, CHONG AHN, HEINEMAN W.R., LIMBACH P.A., SELISKAR C.J.,The autofluorescence of plastic materials and chips measured under laser irradiation, Lab on a Chip 5(12), 2005, pp. 1348–1354.
- [26] SIKANEN T., HEIKKILÄ L., TUOMIKOSKI S., KETOLA R.A., KOSTIAINEN R., FRANSSILA S., KOTIAHO T.,Performance of SU-8 microchips as separation devices and comparison with glass microchips, Analytical Chemistry 79(16), 2007, pp. 6255–6263.
- [27] RODOLPHE M., SCHMID S., JOHANSSON A., EJSING L., NORDSTROM M., HAFLIGER D., CHRISTENSEN C.B.R., BOISEN A., DUFVA M., Immobilisation of DNA to polymerised SU-8 photoresist, Biosensors and Bioelectronics 21(7), 2006, pp. 1327–1332.
- [28] AGRAWAL G.P., Lightwave Technology – Components and Devices, Wiley-Interscience, 2004.
- [29] NATHAN M., LEVY O., GOLDFARB I., RUZIN A., Monolithic coupling of a SU8 waveguide to a silicon photodiode, Journal of Applied Physics 94(12), 2003, pp. 7932–7934.
- [30] BORREMAN A., MUSA S., KOK A., DIEMMER B., DRIESSEN A., Fabrication of polymeric multimode waveguides and devices in SU-8 photoresists using selective polymerization, Proceedings of Symposium IEEE/LEOS, 2002, pp. 83–86.
- [31] VOIGHT A., LABONFOIL – 1st year report, Micro Resist Technology GmbH.
- [32] RUANO-LOPEZ J.M., AGIRREGABIRIA M., OLABARRIA G., VERDOY D., BANG D.D., BU M., WOLFF A.,VOIGT A., DZIUBAN J.A., WALCZAK R., BERGANZO J., The SmartBioPhone, a point of care vision under development through two European projects: OPTOLABCARD and LABONFOIL, Lab on a Chip 9(11), 2009, pp. 1495–1499.
- [33] WALCZAK R., DZIUBAN J., KOSZUR J., BANG D.D., RUANO-LOPEZ J., Miniaturized real-time PCR system: toward smart diagnostic device for point-of-care food pathogens DNA analyze, Proceedings of 15th International Conference MIXDES 2008, Poznań, Poland, June 19–21, 2008, pp. 633–636.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0019-0046