PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Basic research on determining optical properties of tissues in vivo by measuring diffuse reflectance with a charge-coupled device

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We measured the absorption coefficient and the reduced scattering coefficient of Intralipid solution and human forearm tissues in vivo by measuring diffuse reflectance with a charge-coupled device, examining the techniques involved. The experimental results indicate that the error is less than or equal to 8% using the diffusion theory, under the condition that the reduced scattering coefficient is one order of magnitude greater than the absorption coefficient. The stability and precision of optical property measurements are significantly improved by using the multistep iterative fitting method and using the ring-zone-constraint method to determine the diffuse reflectance center. The efficiency of reverse algorithm is greatly enhanced by selecting a one-dimensional array on the straight line crossing both the entry point and the diffusion center for fitting.
Słowa kluczowe
Czasopismo
Rocznik
Strony
541--555
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
autor
autor
autor
autor
autor
  • Department of Physics, Beijing Normal University, Beijing Area Major Laboratory of Applied Optics, Beijing, 100875, P.R. China
Bibliografia
  • [1] WILSON B.C., PATTERSON M.S., The physics, biophysics and technology of photodynamic therapy, Physics in Medicine and Biology 53(9), 2008, pp. R61–R109.
  • [2] WANG H.-W., ZHU T.C., PUTT M.E., SOLONENKO M., METZ J., DIMOFTE A., MILES J., FRAKER D.L., GLATSTEIN E., HAHN S.M., YODH A.G., Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy, Journal of Biomedical Optics 10(1), 2005, p. 014004.
  • [3] BASHKATOV A.N., GENINA E.A., KOCHUBEY V.I., TUCHIN V.V., Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm, Journal of Physics D: Applied Physics 38(15), 2005, pp. 2543–2555.
  • [4] DURDURAN T., CHOE R., CULVER J.P., ZUBKOV L., HOLBOKE M.J., GIAMMARCO J., CHANCE B., YODH A.G., Bulk optical properties of healthy female breast tissue, Physics in Medicine and Biology 47(16), 2002, pp. 2847–2861.
  • [5] KIENLE A., LILGE L., PATTERSON M.S., HIBST R., STEINER R., WILSON B.C., Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissuem, Applied Optics 35(13), 1996, pp. 2304–2314.554 P. SUN et al.
  • [6] DIMOFTE A., FINLAY J.C., ZHU T.C., A method for determination of the absorption and scattering properties interstitially in turbid media, Physics in Medicine and Biology 50(10), 2005, pp. 2291–2311.
  • [7] BARGO P.R., PRAHL S.A., GOODELL T.T., SLEVEN R.A., KOVAL G., BLAIR G., JACQUES S.L., In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy, Journal of Biomedical Optics 10(3), 2005, p. 034018.
  • [8] TSENG S.-H., GRANT A., DURKIN A.J., In vivo determination of skin near-infrared optical properties using diffuse optical spectroscopy, Journal of Biomedical Optics 13(1), 2008, p. 014016.
  • [9] YANG H.Q., XIE S.S., LI H., LU Z.K., Determination of human skin optical properties in vivo from reflectance spectroscopic measurements, Chinese Optics Letters 5(3), 2007, pp. 181–183.
  • [10] GROENHUIS R.A.J., FERWERDA H.A., BOSCH J.J.T., Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory, Applied Optics 22(16), 1983, pp. 2456–2462.
  • [11] GROENHUIS R.A.J., BOSCH J.J.T., FERWERDA H.A., Scattering and absorption of turbid materials determined from reflection measurements. 2: Measuring method and calibration, Applied Optics 22(16), 1983, pp. 2463–2467.
  • [12] HIELSCHER A.H., JACQUES S.L., WANG L., TITTEL F.K., The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues, Physics in Medicine and Biology 40(11), 1995, pp. 1957–1975.
  • [13] FARRELL T.J., PATTERSON M.S., WILSON B., A diffusion theory model of spatially resolved, steady--state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo, Medical Physics 19(4), 1992, pp. 879–888.
  • [14] WANG L., JACQUES S.L., Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium, Applied Optics 34(13), 1995, pp. 2362–2366.
  • [15] LIN S.-P., WANG L., JACQUES S.L., TITTEL F.K., Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry, Applied Optics 36(1), 1997, pp. 136–143.
  • [16] MARQUEZ G., WANG L.V., LIN S.-P., SCHWARTZ J.A., THOMSEN S.L., Anisotropy in the absorption and scattering spectra of chicken breast tissue, Applied Optics 37(4), 1998, pp. 798–804.
  • [17] SUN P., WANG Y., MO X.L., XIE J.H., Noninvasive determination of absorption coefficient and reduced scattering coefficient of human skin tissues in vivo with oblique-incidence reflectometry, Chinese Optics Letters 6(12), 2008, pp. 932–934.
  • [18] SUN P., WANG Y., Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm, Optics and Laser Technology 42(1), 2010, pp. 1–7.
  • [19] VAN STAVEREN H.J., MOES C.J.M., VAN MARIE J., PRAHL S.A., VAN GEMERT M.J.C., Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm, Applied Optics 30(31), 1991, pp. 4507–4514.
  • [20] POGUE B.W., WHITE E.A., ÖSTERBERG U.L., PAULSEN K.D., Absorbance of opaque microstructures in optically diffuse media, Applied Optics 40(25), 2001, pp. 4616–4621.
  • [21] FLOCK S.T., JACQUES S.L., WILSON B.C., STAR W.M., VAN GEMERT M.J.C., Optical properties of Intralipid: A phantom medium for light propagation studies, Lasers in Surgery Medicine 12(5), 1992, pp. 510–519.
  • [22] DING H.F., LU J.Q., WOODEN W.A., KRAGEL P.J., HU X.-H., Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm, Physics in Medicine and Biology 51(6), 2006, pp. 1479–1489.
  • [23] HALE G.M., QUERRY M.R., Optical constants of water in the 200-nm to 200-μm wavelength region, Applied Optics 12(3), 1973, pp. 555–563.
  • [24] DRIVER I., FEATHER J.W., KING P.R., DAWSON J.B., The optical properties of aqueous suspensions of Intralipid, a fat emulsion, Physics in Medicine and Biology 34(12), 1989, pp. 1927–1930.
  • [25] MOES C.J.M., VAN GEMERT M.J.C., STAR W.M., MARIJNISSEN J.P.A., PRAHL S.A., Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm, Applied Optics 28(12), 1989, pp. 2292–2296.
  • [26] CHEN C., LU J.Q., DING H.F., JACOBS K.M., DU Y., HU X.-H., A primary method for determination of optical parameters of turbid samples and application to Intralipid between 550 and 1630 nm, Optics Express 14(16), 2006, pp. 7420–7435.
  • [27] DOORNBOS R.M.P., LANG R., AALDERS M.C., CROSS F.W., STERENBORG H.J.C.M., The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy, Physics in Medicine and Biology 44(4), 1999, pp. 967–981.
  • [28] TROY T.L., THENNADIL S.N., Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm, Journal of Biomedical Optics 6(2), 2001, pp. 167–176.
  • [29] ZONIOS G., DIMOU A., Light scattering spectroscopy of human skin in vivo, Optics Express 17(3),2009, pp. 1256–1267.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0018-0035
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.