PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The low temperature co-fired ceramics (LTCC) chip for polymerase chain reaction (PCR) application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The DNA (deoxyribonucleic acid) amplification chip made of DP951 (from DuPont) ceramics consists of a microchamber, internal and external metallization. The external metallization is used for attachment of SMD (surface mount device) electronics elements. The internal metal layer improves thermal conditions inside the chamber. The temperature distribution in the chamber is verified by numerical simulation. Heating is realized by an external SMD resistor. The temperature measurements are made by attached Pt100 component. The temperature control is realized by a microcontroller based electronic system. Settings and visualization of the polymerase chain reaction (PCR) process parameters are actualized by dedicated PC (personal computer) software. The system is successfully tested. The DNA amplification inside the low temperature co-fired ceramics (LTCC) chip is achieved.
Czasopismo
Rocznik
Strony
471--480
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
autor
  • Wrocław University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wrocław, Poland
Bibliografia
  • [1] CORDINGLEY R., KOHAN L., BEN-NISSAN B., PEZZOTTI G., Alumina and zirconia bioceramics in orthopaedic applications, Journal of the Australasian Ceramic Society 39(1), 2003, pp. 20–28.
  • [2] NOWAK D., MIŚ E., DZIEDZIC A., KITA J., Fabrication and electrical properties of laser-shaped thick-film and LTCC microresistors, Microelectronics Reliability 49(6), 2009, pp. 600–606.
  • [3] MALECHA K., MAEDER T., JACQ C., RYSER P., Structuration of the low temperature co-fired ceramics (LTCC) using novel sacrificial graphite paste with PVA–propylene glycol–glycerol–water vehicle, Microelectronics Reliability 51(4), 2011, pp. 805–811.
  • [4] THELEMANN T., FISCHER M., GROß A., MULLER J., LTCC-based fluidic components for chemical applications, Proceedings of Ceramic Interconnect and Ceramic Microsystems Technologies –CICMT, April 23–26, 2007, Denver, USA.
  • [5] GROß G.A., THELEMANN T., SCHNEIDER S., BOSKOVIC D., KÖHLER J.M., Fabrication and fluidic characterization of static micromixers made of low temperature cofired ceramic (LTCC), Chemical Engineering Science 63(10), 2008, pp. 2773–2784. 480 P. BEMBNOWICZ et al.
  • [6] FERCHER G., HALLER A., SMETANA W., VELLEKOOP M.J., Ceramic capillary electrophoresis chip for the measurement of inorganic ions in water samples, Analyst 135(5), 2010, pp. 965–970.
  • [7] FERCHER G., SMETANA W., VELLEKOOP M.J., Microchip electrophoresis in low-temperature co-fired ceramics technology with contactless conductivity measurement, Electrophoresis 30(14), 2009, pp. 2516–2522.
  • [8] BEMBNOWICZ P., NOWAKOWSKA D., MAŁODOBRA M., JONKISZ A., DOBOSZ T., GOLONKA L.,The LTCC–glass chip for gel electrophoresis, Proceedings of 33 International Conference of IMAPS, September 21–24, 2009, Pszczyna, Poland.
  • [9] BARTSCH DE TORRES H., RENSCH C., FISCHER M., SCHOBER A., HOFFMANN M., MÜLLER J., Thick film flow sensor for biological microsystems, Sensors and Actuators A: Physical 160(1–2), 2010, pp. 109–115.
  • [10] CHUNSUN ZHANG, JINLIANG XU, WENLI MA, WENLING ZHENG, PCR microfluidic devices for DNA amplification, Biotechnology Advances 24(3), 2006, pp. 243–284.
  • [11] BEMBNOWICZ P., MAŁODOBRA M., KUBICKI W., SZCZEPAŃSKA P., GÓRECKA-DRZAZGA A., DZIUBAN J., JONKISZ A., KARPIEWSKA A., DOBOSZ T., GOLONKA L., Preliminary studies on LTCC based PCR microreactor, Sensors and Actuators B: Chemical 150(2), 2010, pp. 715–721.
  • [12] CHOU C., CHANGRANI R., ROBERTS P., SADLER D., BURDON J., ZENHAUSERN F., LIN S., MULHOLLAND A., SWAMI N., TERBRUEGGEN R., A miniaturized cyclic PCR device-modeling and experiments, Microelectronic Engineering 61–62, 2002, pp. 921–925.
  • [13] ZAWADA T., Simultaneous estimation of heat transfer coefficient and thermal conductivity with application to microelectronic materials, Microelectronics Journal 37(4), 2006, pp. 340–352.
  • [14] MARKOWSKI P., DZIEDZIC A., Numerical simulations of temperature distribution inside thermopiles, Proceedings of International Conference MIDEM 2009, Postojna, Slovenia, pp. 161–166.
  • [15] SADLER D.J., CHANGRANI R., ROBERTS P., CHOU C.F., ZENHAUSERN F., Thermal management of BioMEMS, Proceedings of The Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002, San Diego, USA.
  • [16] www.ansys.com, 18.02.2011.
  • [17] SADLER D.J., CHANGRANI R., ROBERTS P., CHIA-FU CHOU, ZENHAUSERN F., Thermal management of BioMEMS: Temperature control for ceramic-based PCR and DNA detection devices, IEEE Transactions on Components and Packaging Technology 26(2), 2003, pp. 309–316.
  • [18] BEMBNOWICZ P., NOWAKOWSKA D., GOLONKA L., Integrated LTCC chamber with optical ports and thermal control elements, Proceedings of 32nd International Spring Seminar on Electronics Technology, May 13–17, 2009, Brno, Czech Republic.
  • [19] RADSTROM P., KNUTSSON R., WOLFFS P., LOVENKLEV M., LOFSTROM C., Pre-PCR processing. Strategies to generale PCR-compatible samples, Molecular Biotechnology 26, 2004, pp. 133–146.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0017-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.