PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Room temperature ferromagnetism in Si nanocaps on self-assembled glass beads

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on self-assembly techniques, Si layers of various thicknesses were deposited on glass bead arrays of various dimensions. The experimental results support the view that the self-assembled glass beads of small sizes (i.e., 10 and 20 nm in diameter), covered with a Si layer below 5 nm in thickness, can induce ferromagnetism. Regularity in the saturation magnetization confirms that the ferromagnetic-like behaviours heavily depend on both the size of the glass beads as well as the thickness of Si nanocaps. Maximum magnetization (750 emu/cm3) was found in the 20 nm glass bead template on which was deposited an ultra-thin 1 nm Si layer. We suggest that the quantum confinement mechanism helps to promote the unpaired electrons, which interact with neighbouring counterparts through the tunnelling effect and, thus, contribute to room temperature ferromagnetism.
Wydawca
Rocznik
Strony
823--832
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • Institute of Materials Engineering National Taiwan Ocean University Keelung, 20224 Taiwan Republic of China
Bibliografia
  • [1] DORNELES L.S., VENKATESAN M., MOLINER M., LUNNEY J.G., COEY J.M.D., Appl. Phys. Lett., 85 (2004), 6377.
  • [2] COEY J.M.D., VENKATESAN M., STAMENOV P., FITZGERALD C.B., DORNELES L.S., Phys. Rev. B, 72 (2005), 024450.
  • [3] ESQUINAZI P., HÖHNE R., J. Magn. Magn. Mater., 290 (2005), 20.
  • [4] HERNANDO A., SAMPEDRO B., LITRÁN R., ROJAS T.C., SÁNCHEZ-LÓPEZ J.C., FERNÁNDEZ A., Nanotechnology, 17 (2006), 1449.
  • [5] DUTTA P., PAL S., SEEHRA M.S., ANAND M., ROBERTS C.B., Appl. Phys. Lett., 90 (2007), 213102.
  • [6] WANG W.C., KONG Y., HE X., LIU B., Appl. Phys. Lett., 89 (2006), 262511.
  • [7] SUBER L., FIORANI D., SCAVIA G., IMPERATORI P., PLUNKETT W.R., Chem. Mater., 19 (2007), 1509.
  • [8] GARITAONANDIA J.S., INSAUSTI M., GOIKOLEA E., SUZUKI M., CASHION J.D., KAWAMURA N., OHSAWA H., DE MURO I.G., SUZUKI K., PLAZAOLA F., ROJO T., Nano Lett., 8 (2008), 661.
  • [9] LIOU Y., SHEN Y.L., Adv. Mater., 20 (2008), 779.
  • [10] LIOU Y., SU P.W., SHEN Y.L., Appl. Phys. Lett., 90 (2007), 182508.
  • [11] MIELKE A., J. Phys. A, 24 (1991), L73.
  • [12] LIEB E.H., Phys. Rev. Lett., 62 (1989), 1201.
  • [13] TASAKI H., Phys. Rev. Lett., 69 (1992), 1608.
  • [14] MOULTON B., LU J.J., HAJNDL R., HARIHARAN S., ZAWOROTKO M.J., Angew. Chem. Int. Ed., 41 (2002), 2821.
  • [15] TAKAGI H., OGAWA H., YAMAZAKI T., ISHIZAKI A., NAKAGIRI T., Appl. Phys. Lett., 56 (1990), 2379.
  • [16] CANHAM L.T., Appl. Phys. Lett., 57 (1990), 1046.
  • [17] WANG L.W., ZUNGER A., J. Phys. Chem., 98 (1994), 2158. 832 Y.C. CHI, Y. LIOU
  • [18] YORIKAWA H., UCHIDA H., MURAMATSU S., J. Appl. Phys., 79 (1996), 3619.
  • [19] KUX A., CHORIN M.B., Phys. Rev. B, 51 (1995), 17535.
  • [20] REN S.Y., DOW J.D., Phys. Rev. B, 45 (1992), 6492.
  • [21] YAMAMOTO M., HAYASHI R., TSUNETOMO K., KOHNO K., OSAKA Y., Jpn. J. Appl. Phys., 30 (1991), 136.
  • [22] CULLIS A.G., CANHAM L.T., CALCOTT P.D.J., J. Appl. Phys., 82 (1997), 909.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0016-0038
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.