PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detektory elektronów w elektronowych mikroskopach skaningowych wysoko próżniowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Electron detectors in high vacuum scanning electron microscopes
Języki publikacji
PL
Abstrakty
PL
Omówiono detektory elektronów stosowane w elektronowych mikroskopach skaningowych w warunkach wysokiej próżni w komorze preparatowej. Przedstawiono detektory przeznaczone do otrzymywania kontrastu topograficznego i materiałowego. Główny nacisk położono na detektory elektronów rozproszonych wstecznie, przeznaczone do otrzymywania kontrastu topograficznego. Podano rozwiązania konstrukcyjne, analiz: działania, wyniki test6w eksperymentalnych oraz zastosowania detektorów. Przedyskutowano wpływ rodzaju zbieranych elektron6w (wtórych lub rozproszonych wstecznie), rodzaju elementu detekcyjnego (scyntylator, dioda półprzewodnikowa, powielacz elektronowy), usytuowania detektora w komorze mikroskopu, efektywności zbierania elektronów wyemitowanych z próbki oraz cech powierzchni próbki na sygnał detektora. Opisano metody stosowane podczas projektowania i optymalizacji detektorów, a mianowicie metod;: Monte Carlo do symulacji rozproszenia elektron6w w próbce i obliczania sygnałów detektorów oraz metody testów doświadczalnych. Przedstawiono wyniki obliczeń elektronooptycznych, wyniki obliczeń sygnałów oraz wyniki testów dla różnych próbek i różnych detektorów. Przedstawiono sposób obliczania oraz wyniki pomiar6w wsp6lczynnika szumów różnych detektorów. Głównym kierunkiem badan autora było opracowanie nowych detektorów kontrastu topograficznego wykorzystujących elektrony rozproszone wstecznie wyemitowane z próbki pod małymi kątami w stosunku do powierzchni. Wyniki testów pokazują, że nowe detektory zapewniają uzyskanie wysokiego poziomu kontrastu topograficznego w obrazach mikroskopowych, zarówno w zakresie elektronowej mikroskopii skaningowej standardowej (napięcie przyspieszające wyższe od 5 kV), jak i niskonapięciowej (napięcie przyspieszające niższe od 5 kV).
EN
Electron detectors used in scanning electron microscopes with high vacuum in the specimen chamber are described. Detectors used for obtaining topographic and material contrast are presented, electron detectors of backscattered electrons used for obtaining topographic contrast are emphasized. Construction solutions, functional analysis, results of experimental tests and applications of detectors are presented. A dependence of the detector signal on the type of collected electrons (secondary or backscattered electrons), on the type of a detection element (scintillator, semiconductor diode, electron multiplier), on position of the detector in a microscope chamber, on efficiency of collection of electrons emitted from the specimen surface and on specimen surface features is discussed. Methods used in a stage of design and optimization of the detector, i.e. Monte Carlo method of simulation of electron scattering in the specimen and computation of detector signals and methods of experimental tests are described. Results of electro-optical and signal computations and results of experimental tests for different specimens and different detectors are presented. A method of computation of detector noise coefficient and results of its measurements for different detectors is presented. The main direction of author's research was development of new topographic contrast detectors utilizing backscattered electrons emitted at low angles in respect to the specimen surface. Tests results show, that new detectors enable to obtain high level of topographic contrast in micrographs, in the range of standard scanning electron microscopy (accelerating voltage higher than 5 kV), as well as in the range of low voltage scanning electron microscopy (accelerating voltage lower than 5 kV).
Twórcy
autor
  • Instytut Materiałoznawstwa i Mechaniki Technicznej Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] Agemura T., Fukuhara S., Todokoro H., Measurement technique for the incident electron current in secondary electron detectors and its application in scanning electron microscopes, Scanning, Vol. 23, 2001,403-409.
  • [2] Ahlen A., Sternad M., Wiener filter using polynomial equations, IEEE Trans. Signal Proc., Vol. 39, 1991,2387-2399.
  • [3] AI-Ahmad K.O., Watt D.E., Stopping powers and extrapolated ranges for electrons (1-10 keV) in metals, I Phys. D, Vol. 16, 1983,2257-2267.
  • [4] Alvarez A.G., Bonetto R.D., Guerin D.M.A., Peez C.G., Images of the inner parts of scanning electron microscopes, Philips Electron Optics Bulletin, Vol. 120, 1984,39-43.
  • [5] Archard G.D., Back scattering of electrons,. J. Appl. Phys., Vol. 32, 1961, 1505-1509.
  • [6] Arnal F., Verdier P., Vincensini P.D., Coefficient de retrodiffusion dans Ie cas d'electrons monocinetiqees arrivant sur la cible sous une incidence oblique, Compt. Rend Acad. Sci. (Paris), Vol. 268,1969, 1526-1529.
  • [7] Autrata R., Schauer P., Kvapil I, Kvapil Jos., A single crystal of YAG - new fast scintillator in SEM, I Phys. E, Vol. II, 1978, 707-708.
  • [8] Autrata R., Schauer P., Kvapil J., Kvapil Jos., A single crystal of YA 103: Ce3+ as afast scintillator in SEM, Scanning, Vol. 5, 1983, 91-96.
  • [9] Autrata R., Schauer P., Kvapil I, Kvapil Jos., Single crystal aluminates - a new generation of scintillators for scanning electron microscopes and transparent screens, Scanning Electron Microscopy 1983/II, SEM Inc., AMF O'Hare (Chicago) 1983,489-500.
  • [10] Autrata R., Schauer P., Kvapil J., Kvapil Jos., Die Anwendung der Einkristall-Szintillatoren und Sichtschirme in Elektronenmikroskopen, BEDO, Vol. 18, 1985, 97-106.
  • [11] Autrata R., Backscattered electron imaging using single crystal scintillator detectors, Scanning Microscopy, Vol. 3,1989,739-763.
  • [12] Autrata R., Hejna J., Detectors for low voltage scanning electron microscopy, Scanning, Vol. 13, 1991,275-287.
  • [13] Ayers G.R., Dainty Ie., Iterative blind deconvolution method and its applications, Optics Letters, Vol. 13, 1988,547-549.
  • [14] Balasubramanyam M., Munro E., Taylor I, Secondary electron detection in the scanning electron microscope, Nucl. Instmm. Meth. Phys. Res. A, Vol. 363, 1995, 27ę275.
  • [15] Ball M.D., McCartney D.G., The measurement of atomic number and composition in a SEM using backscattered electrons, I Microscopy, Vol. 124, 1981, 57-68.
  • [16] Barth IE., Lencova B., Wisselink G., Field evaluation from potentials calculated by the finite element method for ray tracing: the slice method, Nucl. Instr. Meth. Phys. Res. A, Vol. 298, 1990, 263-268.
  • [17] Baumann w., Niemietz A., Reimer L., Volbert B., Preparation of P-47 scinlillalors for STEM, 1. Microsc., Vol. 122,1981,181-186.
  • [18] Baumann W., Reimer L., Comparison of the noise of differenl eleclron delection syslems using scinlillator-photomultiplier combinalion, Scanning, Vol. 4, 1981, 141-151.
  • [19] Beil W., Carlsen I.C., Desai Y., Reimer L., Three-dimensional digital surface reconstruction in scanning electron microscopy using signals of a multiple detector system, Eur. 1. Cell Biology, Vol. 48, Suppl. 25, 1989, 13-16.
  • [20] Bed W., Carlsen I.e., A combination of topographical contrasl and stereoscopy for the reconstruction ofsurface topographies in SEM, 1. Microscopy, Vol. 157, 1990, 127-133.
  • [21] Bethe R, Zur TheOl'ie des Durchgangs schneller Korpuskularstrahlen durch Materie, Annalen der Physik, Vol. 5, 1930, 325-400.
  • [22] Bishop RE., A Monle Carlo calculalion of the scattering of electrons in copper, Proc. Phys. Soc., Vol. 85, 1965, 855-866.
  • [23] Bishop H.E., Electron scattering and X-ray production, PhD Thesis, Cambridge University, Cambridge 1966.
  • [24] Blaschke R., Schur K., Der Informationsgehalt des Riickstreubildes in Raster-elektronenmikroskop, BEDO, Vol. 7,1974,33-52.
  • [25] Booker G.R., Scanning electron microscope, Ihe inslrument. [w:] Modem Diffraction and Imaging Techniques in Material Science, North-Holland, Amsterdam 1970, 553-595.
  • [26] Boyde A., Cowham M.J., An allernative melhod for oblaining converted back-scaltered eleclron images and other uses for specimen biasing in biological SEM, Scanning Electron Microscopy I 980fI, SEM Inc., AMF O'Hare (Chicago) 1980,227-232.
  • [27] B6ngeler R., Rasterelektronenmikroskopie mil niedrigen Energien, Praca doktorska, Uniwesytet Munster (Niemcy) 1992.
  • [28] Bongeler R., Golla U., Kassens M., Reimer L., Schindler B.,Senkel R., Spranck M., Electron¬specimen interaclions in low-vollage scanning electron microscopy, Scanning, Vol. 15, 1993, 1-18.
  • [29] Bronshtein 1.M., Fraiman B.S., Vtoricznaja elektronnaja emisja, Nauka, Moskwa 1969.
  • [30] Bronshtein J.M., Stozharov Y.M., Pronin Y.P., Angular and energy dislribution of electrons inelaslcally reflected from solids, Sov. Phys. - Solid State, Vol. 13, 1972, 2821-2826 (Fiz. Tverd. Tela, Vol. 13, 1971,3359-3365).
  • [31] Brown D.B., Ogilvie R.E., An electron lransporl model for the prediclion of X-ray production and eleclron backscattering in eleclron microanalysis, 1. Appl. Phys., Vol. 37, 1966,4429-4433.
  • [32] Brown D.B., Wittry D.B., Kyser D.F., Prediction of X-ray production and electron scattering in electron-probe analysis using a Iransporl equation, 1. Appl. Phys., Vol. 40, 1969, 1627-1636.
  • [33] Brunner M., Simulation of backscattered eleclrons by reflection of primary electrons applied 10 optimization of detector designs, Appl. Phys. Lett., Vol. 43, 1983, 391-393.
  • [34] Brunner M., Schmid R., Characterislics of an electric/magnetic quadrupole delector for low voltage scanning electron microscopy, Scanning Microscopy, Vol. I, 1987, 1501-1506.
  • [35] Buczkowski A., Radzimski Z., Hejna J., Delekcja elektronow rozproszonych wstecznie welektro¬nowym mikroskopie skaningowym, Elektronika, Vol. 27, 1986,41-43.
  • [36] Buczkowski Z., Hejna J., Radzimski Z., Signal mixing techniquefor backscatlered electrons inlhe scanning electron microscope, Scanning Microscopy, Vol. 2, 1988, 633-638.
  • [37] Carasso A.S., Brightt D.S., Vladar A.E., The APEX method and real-lime blind deconvolution of scanning electron microscope imagery, Report NISTIR 6835, National Institute of Standards and Technology, Gaithersburg (USA) 200 I.
  • [38] Carlsen I.e., Reconstruclion of true sUijace topographies in scanning electron microscopes using backscaltered eleclrons, Scanning, Vol. 7, 1985, 169-177.
  • [39] Casey S.D., Multichannel deconvolution with applications to signal and image processing, Report AFOSR TR96---003, Air Force Office of Scientific Research, Bolling (USA) 1995.
  • [40] Castaing R., Electron probe microanalysis, Adv. Electronics Electron Phys., Vol. 13, 1960, 3 I 7¬386.
  • [41] Chang TH.P., Detection of electron signals for microfabrication registration, Proc. 8th lnt. Congr. Electr. Microsc., Canberra (Australia) 1974, Vol. 1,650-651.
  • [42] Comins N.R., Hengstberger M.M.E., Thirwall J.T, Preparation and evaluation of P-47 scintillatorsfor scanning electron microscope, J. Phys. E, Vol. 11, 1978, 1041-1047.
  • [43] Comins N.R., Thirwall J.T, Qantitative studies and theoretical analysis of the performance of the scintillation electron detector, J. Microscopy, Vol. 124, 1981, 119-133.
  • [44] Cosslett VE., Thomas R.N., Multiple scattering of 5-30 keV electrons in evaporated metal films II: Range-energy relations, Brit. J. Appl. Phys., Vol. 15, 1964, 1283-1300.
  • [45] Cosslett VE., Thomas R.N., Multiple scattering of 5-30 keV electrons in evaporated metal films III: Backscattering and absorption, Brit. J. Appl. Phys., Vol. 16, 1965, 779-796.
  • [46] Crewe AV, Lin P.S.D., The use of back5cattered electrons for imaging purposes in a scanning electron microscope, Ultramicroscopy, Vol. I, 1976,231-238.
  • [47] Czepkowski T, Sl6wko W., Some limitations of surface profile reconstruction in scanning electron microscopy, Scanning, Vol. 18, 1996, 433--446.
  • [48] Czyzewski Z., O'Neil MacCallum D., Romig A, Joy D.C., Calculation of Mott scattering cross section, J. Appl. Phys. Vol. 68, 1990,3066-3072.
  • [49] Darlington E.H., Backscattering of 10-100 keV electrons from thick tmgets, J. Phys. D, Vol. 8, 1975,85-93.
  • [50] Darlinski A., Measurement of angular distribution of back5cattered electrons in the range of 5 to 30 keV, Phys. Status Solidi (a), Vol. 63,1981, 663--667.
  • [51] Desai V, Einsatz eines Mikrocomputers zur digitalen Bildverarbeitung an einem Rasterelektronenmikroskop, Praca dyplomowa, Uniwesytet Munster (Niemcy) 1984.
  • [52] Ding Z.J., Shimizu R., Monte Carlo study of backscattering and secondary electron generation, Surface Sci., Vol. 197, 1988, 539-554.
  • [53] Ding Z.J., Shimizu R., Inelastic collisions of kV electrons in solids, Surface Sci., Vol. 222, 1989, 313-331.
  • [54] Ding Z.J., Ziqin W., A comparison of Monte Carlo simulations of electron scattering and X-ray production in solids, J. Phys. D, Vol. 26, 1993, 507-516.
  • [55] Donovan J.J., Pingitore N.E., Westphal A, Compositional averaging of backscatter intensities in compounds, Microsc. Microanal., Vol. 9,2003,202-215.
  • [56] Drescher H., Reimer L., Seidel H., Riick5treukoeffizient und Sekundiirelektronen Ausbeute von 10¬100 ke V und Beziehungen zur Raster Elektronenmikroskopie, Z. Angew. Phys., Vol. 29, 1970, 33 1¬336.
  • [57] Eberhardt E.H., An operational model for microchannel plate devices, IEEE Trans. Nucl. Sci., Vol. NS-28, 1981,712-717.
  • [58] Eckert R., Inspecting the SEM chamber with charged polystyrene mirror, Scanning, Vol. 14, 1992, 73-75.
  • [59] EI Gomati M.M., Assa'd A.M.D., El Gomati T., Zadrazil M., On the measurement of low energy backscattered and secondmy electron coefficients, EMAG97, lnst. Phys. Conf. Ser. No 153, lOP Publishing Ltd., Bristol 1997, 265-268.
  • [60] Erlandsen S., Chen Y, Frethem c., Detry J., Wells C., High-resolution backscatter electron imaging of colloidal gold in LVSEM, J. Microsc., Vol. 211,2003,212-218.
  • [61] Everhart TE., Simple theOty concerning the reflection of electronsfrom solids, J. Appl. Phys., Vol. 31, 1960,1483-1490.
  • [62] Everhart T.E., Thomley R.F.M., Wide-band detector for micro-microampere low-energy electron currents, I. Sci. lnstr., Vol. 37,1960,246-248.
  • [63] Fathers D.I., Rez P., A transport equation theory of electron backscattering, Scanning Electron Microscopy 1 979/I, SEM Inc., AMF O'Hare (Chicago) 1979,55-66.
  • [64] Filipov M.N., Rau E.I., Sennov R.A., Boyde A., Howell P.G.T., Light collection efficiency and light transport in backscattered electron scintillator detectors in scanning electron microscopy, Scanning, Vol. 23, 2001,305-3 I 2.
  • [65] Fish D.A., Brinicombe A.M., Pike E.R., Walker J.G., Blind deconvolution by means of the Richardson-Lucy algorithm, I. Opt. Soc. Am. A, Vol. 12, 1995, 58-65.
  • [66] Fitch R.K, Johnson J.D., Walker A.R., A "close approach" high-energy electron detector for examination of insulating materials in a scanning electron microscope, I. Phys. E, Vol. 17, 1984, 25-27.
  • [67] Fitting H.J., Transmission, energy distribution and SE excitation offast electrons in thin solidjilms, Phys. Status Solidi (a), Vol. 26, 1974,525-535.
  • [68] Fitting H.I., Technow R., Electron backscattering at various angles of incidence, Phys. Status Solidi (a), Vol. 76,1983, K151-KI54.
  • [69] Fitting H.I., Six laws of low-energy electron scattering in solids, J. Electr. Spectr. ReI. Phenom., Vol. 136,2004,265-272.
  • [70] Frank I., AI-Ali L., Signal-to-noise ratio of electron micrographs obtained by cross correlation, Nature, Vol. 256,1975,376-379.
  • [71] Frank L., Stekly L., Zadrazil M., El-Gomati M.M., Miillerova I., Electron Backscatteringfrom Real and In-Situ Treated Surfaces, Microchimica Acta, Vol. 132, 2000, 179-188.
  • [72] Frosien I., Plies E., Anger K, Compound magnetic and electrostatic lenses for low-voltage applications, I. Vac. Sci. Technol. B, Vol. 7,1989,1874-1877.
  • [73] Funsten H.O., Suszcynsky D.M., Harper R.W., Mean secondary electron yield of avalanche electrons in the channel of a microchannel plate detector, Rev. Sci. lnstrum., Vol. 67, 1996,3478¬3482.
  • [74] Gauvin R., L'Esperance G., A Monte Carlo code to simulate the effect offast secondary electrons on KAB factors and spatial resolution in TEM, J. Microscopy, Vol. 168,1992,153-167.
  • [75] Gauvin R., Hovington P., Drouin D., Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations, Scanning, Vol. 17, 1995,202-219.
  • [76] Gauvin R., Hovington P., Drouin D., The effect offast secondary electrons on X-ray microanalysis in the scanning electron microscope, Scanning, Vol. 21, 1999, 238-245.
  • [77] Giudicotti L., Bassan M., Pasqualotto R., Sardella A., Simple analytical model of gain saturation in microchannel plate devices, Rev. Sci. lnstrum., Vol. 65, 1994,247-258.
  • [78] Goldstein J.I., Newbery D.E., Echlin P., Joy D.C., Fiori c., Lifshin E, Scanning Electron Microscopy and X-Ray Microanalysis, Plenum Press, New York 1981.
  • [79] Gryzinski M., Classical theory of atomic collisions. I. Theory of inelastic collisions, Phys. Rev., Vol. A138, 1965,336-358.
  • [80] Gupta P. K, Finite beam diameter effect in electron microprobe analysis, J. Phys. D, Vol. 3, 1970, 1919-1924.
  • [81] Hall M.G., Lloyd G.E., The SEM examination of geological samples with a semiconductor back¬scattered electron detector, Amer. Mineral., Vol. 66, 1981,362-368.
  • [82] Hall M.G., Skinner G.K, Use of multichannel pulse height analyser for the analysis of back¬scattered SEM images, I. Microscopy, Vol. 124, 1981, 69-75.
  • [83] Hawryluk R.J., Hawryluk A.M., Energy dissipation in a thin polymer jilm by electron beam scattering, J. Appl. Phys., Vol. 45, 1974, 2551-2566.
  • [84] Heinrich K.F.J., Electron probe microanalysis by specimen current measurement, Proc. 4th Int. Congr. on X-ray Optics and Microanalysis, Hennann, Paris 1966, 159-167.
  • [85] Hejna J., Radzimski Z., Method for separation of topographic contrast in SEM, Proc. 8th Eur. Congr. Electr. Microsc., Budapest 1984, Vol. 1,647-648.
  • [86] Hejna J., Radzimski Z., Buczkowski Z., Detection system for scanning electron microscope, Scanning Electron Microscopy 1985/1, SEM Inc., AMF O'Hare (Chicago) 1985, 151-156.
  • [87] Hejna J., A ring scintillation detector for detection of backscattered electrons in the scanning electron microscope, Scanning Microscopy, Vol. I, 1987, 983-987.
  • [88] Hejna J., Reimer L., Backscattered electron multidetector systems for improved quantitative topographic contrast, Scanning, Vol 9, 1987, 162-172.
  • [89] Hejna J., Optimization of the ring scintillation detector for backscattered electrons in the scanning electron microscope, Proc. 9th Eur. Congr. Electr. Microsc., York 1988, Vol. I, 119-120.
  • [90] Hejna J., Approaches to quantitative electron detection in the scanning electron microscope for topographic studies, Proc. 12th Int. Congr. Electr. Microsc., Seattle 1990, Vol. 1,370-371.
  • [91] Hejna J., Czyzewski Z., Information depth of backscattered electron images in the scanning electron microscope, Proc. 12th International Congress on X-ray Optics and Microanalysis, Krakow 1989, Wyd. AGH, Krakow 1990, Vol. 1,253-256.
  • [92] Hejna J., Backscattered electron signals of coated specimens at low and high detector take-off angles, Proc. EMSA92, Boston 1992, 958-959.
  • [93] Hejna J., Detection of topographic contrast in the scanning electron microscope at low and medium resolution by different detectors and detector systems, Scanning Microscopy, Vol. 8, 1994, 143-164.
  • [94] Hejna J., Backscattered electron imaging in low-voltage SEM, Proc. 13th Int. Congr. Electr. Microsc., Parisl994, Vol. 1,75-76.
  • [95] Hejna J., Topographic and material contrast in low-voltage scanning electron microscopy, Scanning, Vol. 17, 1995,387-394.
  • [96] Hejna J., Detection of BSE in the low voltage SEM with an electrostatic immersion lens and afield-free specimen, Proc. EMAG97, Cambridge 1997,69-72.
  • [97] Hejna J., Optimization of an immersion lens design in the BSE detector for the low voltage SEM, Recent Trends in Charged Particle Optics and Surface Physics, Proc. 6th Intern. Seminar, Brno 1998,30-31.
  • [98] Hejna J., Optimum conditions for observation replicas of metallographic specimens in the scanning electron microscope, Special Edition of the Practical Metallography, No. 32, Werkstoff Informationgeselschaft, Frankfurt 200 I, 347-350.
  • [99] Hejna J., Examination of metallographic replicas in the scanning electron microscope, Pract. Metallogr., Vol. 39,2002,303-320.
  • [100] Hejna J., Ratuszek M., Majewski J., Zakrzewski Z., Scanning electron microscopy examination of telecommunication single mode fiber splices, Optica Applicata, Vol. 33, 2003, 583-589.
  • [101] Hejna J., Spos6b wytwarzania powielacza elektronowego i powielacz elektronowy, Zgloszenie patentowe P381592, 2007.
  • [102] Hejna J., Detektor elektron6w, Zgloszenie patentowe P381593, 2007.
  • [103] Hejna J., Dete/..10r czqstek naladowanych, Zgloszenie patentowe P381625, 2007.
  • [104] Hejna J., Scanning electron microscope electron detector with a radial type discrete dynode electron multiplier, Journal Microsc., Vol. 232,2008,276-281.
  • [105] Hejna J., Application of channel electron multipliers in an electron detector for low voltage scanning electron microscopy, Journal Microsc., Vol. 232, 2008, 369-378.
  • [106] Helbig H.F., Rydgren R.D., Kotorman L., Channel plate detection in low energy scanning electron microscopy, Scanning Microscopy, Vol. I, 1987, 1491-1499.
  • [107] Hermann R, Reimer L., Backscattering coefficient of multi component specimens, Scanning, Vol. 6, 1984,20-29.
  • [108] Hohn F.J., Kindt M., Niedrig H., Stuth B., Elektronenriickstreumessungen an diinen Schichten auf massiven Trdgersubstanzen, Optik, Vol. 46, 1976, 491ę500.
  • [109] Hovington P. Drouin D., Gauvin R, A new Monte Carlo code in C language for electron beam interaction. Part I: Description of the program, Scanning, Vol. 19, 1997, 1-14.
  • [110] Hughes KA, Sulway DV, Wayte CR, Thornton PR., Application of secondary-electron channel multipliers to scanning electron microscopy, J. Appl. Phys., Vol. 38, 1967,4922--4923.
  • [111] Hunger H.J., Kuchler L., Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV, Physica Status Solidi (a), Vol. 56, 1979, K45-K48.
  • [112] Hunger H.J., Rogaschewski S., A study of electron backscattering of thin films on substrates, Scanning, Vol. 8, 1986,257-263.
  • [113] Ito M., Kume H., Oba K., Computer analysis of the timing properties in micro channel plate photomultiplier tubes, IEEE Trans. Nucl. Sci., Vol. NS-31, 1984, 408-12.
  • [114] Jablonski A., Salvat F., Powell c.J., NIST Electron Elastic-Scattering Database - Version 3.0, National Institute of Standards and Technology, Gaithersburg (USA) 2002.
  • [115] Jahrreiss H., Oppel W., Angular distributions of secondary electrons originating from thin films of different metals in re-emission and transmission, J. Vac. Sci. Technol., Vol. 9, 1972, 173-176.
  • [116] Jaksch H., A new high resolution, low voltage FESEMfor true surface imaging and analysis, Proc. 9th Conf. Electr. Micr. Solids, Krak6w-Zakopane 1996, 101-104.
  • [117] Jiang C.Z., Morin P., Rosenberg N., A new type of scanning electron microscope using the coaxial backscattered electrons, Micron, Vol. 33,2002,69-74.
  • [118] Joy D.C., A Database on Electron-Solid Interactions, Scanning, Vol. 17,1995,270-275.
  • [119] Joy D.C., Luo S., An empirical stopping power relationship for low-energy electrons, Scanning, Vol. 11, 1989, 176-180.
  • [120] Joy D.C., Joy C.S., Bunn R.D., Measuring the performance of scanning electron microscope detectors, Scanning, Vol. 18, 1996,533-538.
  • [121] Kaczmarek D., Rekonstrukcja obrazu powierzchni probki w elektronowym mikroskopie skaningo JoI.Ym za pomocq elektronow wstecznie rozproszonych, Oficyna Wydawnicza Politechniki Wroclaw¬skiej, Wroclaw 1999.
  • [122] Kamel N.S., Sim K.S., Image signal-to-noise ratio and noise variance estimation using autoregressive model, Scanning, Vol. 26, 2004, 277-281.
  • [123] Kanaya K., Kawakatsu H., Secondmy electron emission due to primary and backscattered electrons, J. Phys. D, Vol. 5, 1972, 1727-1742.
  • [124] Kanaya K., Okayama S., Penetration and energy-loss theory of electrons in solid targets, J. Phys. D, Vol. 5, 1972, 43-58.
  • [125] Katnani A.D., Hurban S., Rands B., Low-voltage scanning electron microscopy: a swjace sensitive technique, J. Vac. Sci. Technol. A, Vol. 9, 1991, 1426-1433.
  • [126] Kayaalp A.E., Jain RC., Using SEM stereo to extract semiconductor wafer pattern topography, Proc. SPIE, Vol. 775, 1987,18-26.
  • [127] Kawamoto H., Yamazaki S., Ishikawa A., Bachanan R, Effects of secondary electron detector position on scanning electron microscope image, Scanning Electron Microscopy 1984/1, SEM Inc., AMF O'Hare (Chicago) 1984, 15ę22.
  • [128] Kimoto S., Hashimoto H., Kosuge T., Hert W., Die Anwendung eines Mehrfach-Detektorsystems zur stereopischen Rasterbeobachtung in der Elektronenstrahl-Mikroanalyse, Microchimica Acta, 1965,471--478.
  • [129] Kimoto S., Hashimoto H., Stereoscopic observation in SEM using multiple detectors, [w:] The Electron Microprobe, Wiley, New York 1966, 480--489.
  • [130] Kazumori H., Development of JSM-7400F: new secondary electron detection systems permit observation of non-conductive materials, JEOL News, Vol. 37E, 2002, 44--47.
  • [131] Knell G., Plies E., Initial resolution measurements of an improved magnetic-electrostatic detector objective lensfor LVSEM, Ultramicrosc., Vol. 81, 2000, 123-127.
  • [132] Koenig G., Nickel W., Storl J., Meyer D., Stange I, Digital stereophotogrammetry for processing SEMdata, Scanning, Vol. 9, 1987, 185-193.
  • [133] Konvalina r., Miillerova I., Efficiency of collection of the secondary electrons in SEM, Microsc. Microanal., Vol. 9 (SllPPI. 3), 2003, 108-109.
  • [134] Konvalina I., Mi1llerova r., The trajectories of secondary electrons in the scanning electron microscope, Scanning Vol. 28, 2006, 245-256.
  • [135] Kotera M., Kishida T., Suga H., Monte Carlo simulations of secondary electrons in solids and its application for scanning electron microscopy, Scanning Microscopy, Vol. 4 (Suppl. 4), 1990, 111-126.
  • [136] Krefting E.R., Reimer L., Monte Carlo Rechnungen zur Elektronendiffusion, [w:] Quantitative Analysis with Electron Microprobes and Secondary Jon Mass Spectrometry, Kernforschungsanlage Jtilich, ltilich 1973, 114-148.
  • [137] Kllienkampff H., Spyra w., Energieverteilung ruckdiffundierter Elektronen, Z. Phys., Vol. 137, 1954,416--425.
  • [138] Kllndur D., Hatzinakos D., Blind image deconvolution, IEEE Signal Processing Magazine, Vol. 13, 1996, 43-64.
  • [139] Kuypers W., Lichtenegger S., Universal detector system for backscattered electrons, transmitted electrons and cathodoluminescence, Proc. 7th Eur. Electr. Microsc. Conf., The Hague 1980, Vol. 1, 522ę523.
  • [140] Lange M., Reimer L., Tollkamp C., Testing of detector strategies in scanning electron microscopy by isodensities, I Microscopy, Vol. 134, 1984, 1-12.
  • [141] Laprade B.N., Cochran R.F., Characterization of common electron multipliers in harsh environments, Proc. Pittcon 2005, Orlando 2005 (htttp://www.burle.com).
  • [142] Laprade B.N., Prunier R., Farr R., Leclerq R., The development of a robust, discrete dynode electron multiplier using novel secondary electron emissive materials, Pittcon 2005, Orlando 2005 (htttp:/ /www.burle.com ).
  • [143] Laprade B.N., Cochran R.F., Prunier R., Leffingwell R., Progress in the development of a high gain atmospheric pressure ion detector, Pittcon 2006, Orlando 2006 (htttp://www.burle.com).
  • [144] Lebiedzik I, An automatic topographical surface reconstruction in the SEM, Scanning, Vol. 2, 1979, 230ę237.
  • [145] Lee K.L., Ward M., Low voltage backscattered electron collection for package substrates and integrated circuit inspection, I Vac. Sci. Technol. B, Vol. 9, 1991,3590-3595.
  • [146] Lenc M., Miillerova I., Optical properties and axial aberration coefficients of the cathode lens in • combination with afocusing lens, Ultramicrosc., Vol. 45,1992,159-162.
  • [147] Lencova B., Wisselink G., Program package for the computation of lenses and deflectors, Nucl. Instr. Meth. Phys. Res. A, Vol. 298, 1990,56-66.
  • [148] Lencova B., Wisselink G., Electron Optical Design Program Package, Kurim (Czechy) 2000 (http://www.lencova.cz).
  • [149] Libby W.E, Measurements of radioactive tracers, Anal. Chern., Vol. 19, 1947,2-6.
  • [150] Liljeqllist D., Simple generalized oscillator strength density model applied to the simulation of ke V electron energy loss distributions, I Appl. Phys., Vol. 57, 1985, 657-665.
  • [151] Love G., Scott VD., Evaluation of a new correction procedure for quantitative electron probe microanalysis, I Phys. D, Vol. 11,1978, 1369-1376.
  • [152] Martin IP., Weimer E., Frosien J., Lanio S., Ultra-high resolution SEM - a new approach, Microscopy and Analysis, 1994,43.
  • [153] Martinez lD., Mayol R, Salvat F., Monte Carlo simulation of kilovolt electron transport in solids, l Appl. Phys., Vol. 67,1990,2955-2964.
  • [154] Medvedev M.N., Scintillacionnye detektOfY, Atomizdat, Moskva 1977.
  • [155] Mityukhlayaev V.B., Dyukov v.G., A new method of compositional image formation by a four¬element backscallered electron detector in a SEM, Scanning, Vol. 16, 1994, 6-10.
  • [156] Moll S.H., Healey F., Sullivan B., Johnson w., A high efficiency nondirectional backsca/lered electron detection mode for SEM, Scanning Electron Microscopy 1978/1, SEM Inc., AMF O'Hare (Chicago) 1978,303-310.
  • [157] Moncrieff D.A., Barker P.R., Secondary electron emission in the scanning electron microscope, Scanning, Vol. I, 1978, 195-197.
  • [158] Munden A.B., Walker D.E.Y., A silicon detectorfor the Stereoscan scanning electron microscope, l Phys. E, Vol. 6,1973,916-920.
  • [159] Muller RH., Interaction of beta particles with maller, Physical Review, Vol. 93, 1954, 891-892.
  • [160] Mullerova I., Frank L., Very low energy microscopy in commercial SEMs, Scanning, Vol. 15, 1993, 193-201.
  • [161] Murata K., Sugiyama K., Quantitative electron microprobe analysis of ultrathin gold films on substrates, l Appl. Phys., Vol. 66, 1989, 4456-4461.
  • [162] Nagatani T., Saito S., Sato M., Yamada M., Development of an ultra high resolution scanning electron microscope by means of afield emission source and in-lens system, Scanning Microscopy, Vol. 1,1987,901-909.
  • [163] Neubert G., Rogaschewski S., Backscattering coefficient measurements of 15 to 60 keVelectrons for solids at various angles of incidence, Phys. Status Solidi (a), Vol. 90, 1980,35-41.
  • [164] Niedrig H., Ein kombiniertes Eifachstreu- und DifJusionsmodei fiir die Elektronen-Riickstreuung diinnerSchichten, BEDO, Vol. 14,1981,291-308.
  • [165] Niedrig H., Electron backscalleringfrom thin films, l Applied Physics, Vol. 53, 1982, RI5-R49.
  • [166] Paluszyilski J., Sl6wko W., Swface reconstruction with the photometric method in SEM, Vacuum, Vol. 78, 2005, 533-537.
  • [167] Papp T., Lepy M.C., Plagnard l, Kalinka G., Papp-Szabo E., A new approach to the determination of the Fanofactor for semiconductor detectors, X-Ray Spectrom., Vol. 34,2005, 106-111.
  • [168] Pawley J.B., Performance of SEM scintillation materials, Scanning Electron Microscopy 1974/1, llTRI, Chicago 1974,27-34.
  • [169] Pen berth M.l, Wallman B.A., Low profile electron collector system, l Vac. Sci. Technol., Vol. 16, 1979,1719-1722.
  • [170] Peters K.R, Conditions required for high quality high magnification images in secondary electron-I scanning electron microscopy, SEM/1982/I, SEM Inc., AMF O'Hare (Chicago) 1982, 1359-1372.
  • [171] Postek M.T., Keery W.l, Low-profile high-efficiency microchannel-plate detector system for scanning electron microscopy applications, Rev. Sci. Instrum., Vol. 61,1990, 1648-1657.
  • [172] Powell e.l, Calculation of electron mean free paths from experimental optical data, Surf. Interf. Anal., Vol. 7, 1985,263-274.
  • [173] Radzimski Z., The backscallering of 10-120 keV electrons for various angles of incidence, Acta Physica Polonica, Vol. A53, 1978,783-790.
  • [174] Radzimski Z.l, Scanning electron microscope solid state detectors, Scanning Microscopy, Vol. I, 1987, 975-982.
  • [175] Radzimski Z.l, Russ J.e., Image simulation using Monte Carlo methods: electron beam and detector characteristics, Scanning, Vol. 17, 1995, 276-280.
  • [176] Rapperport E.l, Deconvolution - a technique to increase electron probe resolution, [w:] Advances in Electronics and Electron Physics, Supplement No.6, Academic Press Inc., New York 1969, 117-136.
  • [177] Reed S.lB., Electron Microprobe Analysis, 2nd ed., Cambridge University Press, Cambridge 1993.
  • [178] Reimer L., Monte Carlo-Rechnungen zur Elektronendiffusion, Optik, Vol. 27, 1968,86-98.
  • [179] Reimer L., Seidel H., Gilde H., Einjluss del' Elektronendiffusion auf die Bildenstehung im Raster¬Elektronenmikroskop, BEDO, Vol. I, 1968, 63-65.
  • [180] Reimer L., Volbert B., Detector system for backscattered electrons by conversion to secondary electrons, Scanning, Vol. 2, 1979,238-248.
  • [181] Reimer L., Tollkamp c., Measuring the backscattering coefficient and secondaty electron yield inside a scanning electron microscope, Scanning, Vol. 3, 1980,35-39.
  • [182] Reimer L., Tollkamp C., Recording of topography by secondary electrons with a two-detector system, Proc. 10th Intern. Congr. Electr. Microsc., Hamburg 1982, 543-544.
  • [183] Reimer L., Electron signal and detector strategy, [w:] Electron Beam Interactions with Solids, SEM Inc., AMF O'Hare (Chicago) 1984,299-310.
  • [184] Reimer L., Lodding B., Calculation and tabulation of Mott cross-sections for large-angle electron scattering, Scanning, Vol. 6, 1984, 128-151.
  • [185] Reimer L., Riepenhausen M., Tollkamp c., Detector strategy for improvement of image contrast analogous to light illumination, Scanning, Vol. 6, 1984, 155-167.
  • [186] Reimer L., Scanning Electron Microscopy, Springer, Berlin 1985.
  • [187] Reimer L., Riepenhausen M., Detector strategy for secondary and backscattered electrons using multiple detector systems, Scanning, Vol. 7, 1985,221-238.
  • [188] Reimer L., Stelter D., FORTRAN 77 Monte Carlo program for minicomputers using Mott cross sections, Scanning, Vol. 8,1986,265-277.
  • [189] Reimer L., Bongeler R., Desai V, Shape from shading using multiple detector signals in scanning electron microscopy, Scanning Microscopy, Vol. I, 1987, 963-967.
  • [190] Reimer L., Golla U., Bongeler R., Kassens M., Schindler B., Senkel R., Charging of bulk specimens, insulating layers and free supporting films in scanning electron microscopy, Optik, Vol. 92, 1992, 14-22.
  • [191] Robinson VN.E., The construction and uses of an efficient backscattered electron detector for scanning electron microscopy, J. Phys. E, Vol. 7, 1974,650-652.
  • [192] Robinson VN.E., Backscattered electron imaging, Scanning Electron Microscopy 1975/I, IITRI, Chicago 1975,51-60.
  • [193] Russ J.C., The Image Processing Handbook, 4th ed., CRC Press, Boca Raton 2002.
  • [194] Russel P.E., Manusco lF., Microchannel plate detector for low voltage scanning electron microscopes, 1 Microscopy, Vol. 140, 1985,323- 330.
  • [195] Salvat F., Mayol R., Elastic scattering of electrons and positrons by atoms. Schrodinger and Dirac partial wave analysis, Compo Phys. Comm., Vol. 74, 1993,358-374.
  • [196] Schauer P., Autrata R., Electro-optical properties of a scintillation detector in SEM, J. Microsc. Spectrosc. Electron., Vol. 4, 1979,633-650.
  • [197] Schauer P., Autrata R., Light transport in single-crystal scintillation detectors in SEM, Scanning, Vol. 14, 1992,325-333.
  • [198] Schauer P., Autrata R., Some methods for investigation of detector components for electron microscopy, Recent Trends in Charged Particle Optics and Surface Physics, Proc. 5th Intern. Seminar, Brno 1996,47-50.
  • [199] Schauer P., Autrata R., Computer designed scintillation detectors for SEM Recent Trends in Charged Particle Optics and Surface Physics, Proc. 5th Intern.. Seminar, Bmo 1996,73-74.
  • [200] Schauer P., Autrata R., Cathodoluminescent properties of single crystal for S(I'EM) detectors. Recent Trends in Charged Particle Optics and Surface Physics, Proc. 6th Intern. Seminar, Bmo 1998,60-63.
  • [201] Schauer P., Autrata R., Pe/formance 0/ detector elements for electron microscopes, Proc. EUREMI2, Brno 2000,1455-8.
  • [202] Seidel H., Messungen zum Riickstreuen- und Transmissionkoeffizienten an polykrista/linen Material und zur Orientierungsanisotropie des Riickstreukoeffizienten und del' Sekundarelektronenausbeute flir 9 bis 100 keV keV EIektronen, Praca doktorska, Uniwersytet Munster (Niemcy) 1972.
  • [203] Seiler H., Determination of the "information depth" in the SEM, Scanning Electron Microscopy I 976/I, IITRI, Chicago 1976,9-16.
  • [204] Seiler H., Secondary electron emission in the SEM, J. Applied Physics, Vol. 54, 1983, RI-RI8.
  • [205] Sexton BA, Davey PI., Scanning electron microscope electron detector system with replaceabledynode multiplier and wide-band isolation amplifier, Rev. Sci. Instrum., Vol. 58, 1987, 1955-1956.
  • [206] Shimizu R., Kataoka Y., Ikuta T., Koshikawa T., Hashimoto H., A Monte Carlo approach to the direct simulation o/electron penetration in solids, J. Phys. D, Vol. 9,1976,101-114.
  • [207] Sibarita J-B., Deconvolution microscopy, Adv Biochem. Engin. Biotechnol., Vol. 95, 2005, 201-243.
  • [208] Sim K.S., Kamel N.S., Image signal-to-noise ratio estimation using the autoregressive model, Scanning, Vol. 26, 2004, 135-139.
  • [209] Sl6wko W., Drzazga W, Felba J., Low voltage scanning electron microscope with a combined multi-electrode retarding lens and detector, Vacuum, Vol. 47, 1996, 1159-62.
  • [210] Sl6wko W, Drzazga W., Detection 0/ secondary electrons in a retarding electric field, Vacuum, Vol. 63, 2001,463-467.
  • [211] Sobering J.S., Bandwidth and risetime, Technote 2, Kansas State University 1999 (www.kstate. edu/ksuedl/publ ications).
  • [212] Sogard M.R., An empirical study 0/ electron backscatteringfrom thin films, J. Applied Physics, Vol. 51, 1980,4417-4425.
  • [213] Stemglass E.J., Backscaltering 0/ kilovolt electrons from solids, Physical Review, Vol. 95, 1954, 345-358.
  • [214] Sze S.M., Physics of semiconductor devices, Wiley, ew York 1981.
  • [215] Takahashi R., Backscaltered SEM using CdS layer scintillator. Proposal 0/ reflected SEM, Scanning Electron Microscopy 1977/1, IITRI, Chicago 1977,71-78.
  • [216] The S-5200 ultra high-resolution field emission SEM - features and some applications, Hitachi Scientific Instrument Technical Data, SEM, No. 98, 200 I (http://www.hitachi-hitec.com).
  • [217] Thong J.T.L., Breton B.C., A topography measurement instrument based on the scanning electron microscope, Rev. Sci. Instrum., Vol. 63, 1992, 131-138.
  • [218] Tomlin S.G., The back-scattering 0/ electronsfrom solids, Proc. Phys. Soc., Vol. 82, 1963,465-466.
  • [219] Tung C.J, Ashley J.C., Ritchie R.H., Electron inelastic mean free paths and energy losses in solids, Surf. Sci., Vol. 81,1979, 427-439.
  • [220] Uchikawa Y., Gouhara K., Yamada S., Ito T., Kodema T., Sardeshmukh P., Comparative study 0/ electron counting and conventional analogue detection 0/ secondGlY electrons in SEM, J. Electron Microscopy, Vol. 41, 1992, 253-260.
  • [221] Vandelinde WE., Caron J. ., Blind deconvolution of SEM images, Proc. 33rd Int. Symp. for Testing and Failure Analysis, ASM International, Materials Park (USA) 2007, 97-102.
  • [222] Van der Voort G.F., The SEM as metallographic tool, [w:] Applied Metallography, Van Nostrand Reinhold Co., 1986, 139-170.
  • [223] Van der Ziel A., Becking A.G.T., Theory o/junction diode andjunction transistor noise, Proc. IRE, Vol. 46, 1958,589-594.
  • [224] Venables I.A., Griffiths B.W, Harland C.J., Ecker K.H., Some developments in SEM instrumentation, Revue de Physique Apliquee, Vol. 9, 1974,419-425.
  • [225] Volbert B., Reimer L., Advantages of two opposite Everhart-Thornley detectors in SEM, Scanning Electron Microscopy 1980/IV, SEM Inc., AMF O'Hare (Chicago), 1980, 1-10.
  • [226] Vonesch C., Unser M., A fast thresholded Landweber algorithm for wavelet-regularized multidimensional deconvolution, IEEE Trans. Image Proc., Vol. 17,2008, 539-549.
  • [227] Wallace W., Schaefer L.H., Swedlow 1.R., A working person S• guide to deconvolution in light microscopy, BioTechniques, Vol. 31, 2001,1076--1097.
  • [228] Wells O.C., New contrast mechanism for scanning electron microscope, Appl. Phys. Lett., Vol. 16, 1970,151-153.
  • [229] Wells O.e., Bremer e.O., Collector tUrf•et for scanning electron microscope, Rev. Sci. Instr., Vol. 41, 1970,1034-1037.
  • [230] Wells O.C., Low-loss image for sUiface scanning electron microscope, Appl. Phys. Lett., Vol. 19, 1971,232-235.
  • [231] Wells O.e., Scanning Electron Microscopy, McGraw Hill Book Co. 1974.
  • [232] Wells O.C., Effects of collector take-off angle and energy filtering on the BSE image in the SEM, Scanning, Vol. 2,1979,199-216.
  • [233] Werner U., Bethge H., Heydenreich 1., An analytical model of electron backscattering for the energy range 10-100 keV, Ultramicroscopy, Vol. 8, 1982,417-428.
  • [234] Williams G., Electron Binding Energies, Uppsala University 1995 (http://xray.uu.se).
  • [235] Wittry, D. B., Secondary electron emission in the electron probe, Proc. 4th Int. Congr. on X-ray Optics and Microanalysis, Hermann, Paris 1966, 168-80.
  • [236] Wolf E.D., Everhart TE., Annular diode detector for high angular resolution pseudo-Kikuchi patterns, Scan. Electr. Microsc. 1969, IITRI, Chicago 1969,41-44.
  • [237] Yamada S., Ito T, Gouhara K., Uchikawa Y., Electron-count imaging in SEM, Scanning, Vol. 13, 1991, 165-171.
  • [238] Yamada S., Nakagawa M., Satoh M., Nakaizumi Y., Model S-5000 UHRSEM and its applications, Hitachi Instrument News, Vol. 27, 1995,26-33.
  • [239] Yamamoto Y., Yamada M., Negishi T, Development of high-resolution field emission scanning electron microscopy with multifunctions for chargeless observation of nonconducting surface, Scanning, Vol. 19, 1997,505-511.
  • [240] Zach J., Rose H., Efficient detection of secondary electrons in low-voltage scanning electron microscopy, Scanning, Vol. 8,1986,285-293.
  • [241] Zach J., Rose H., High-resolution low-voltage electron microprobe with large SE detection efficiency, Proc. EUREM 88, Ins. Phys. Conf. Ser. No. 93, Vol. I, Bristol 1988,81-82.
  • [242] Zach J., Physical aspects of low voltage scanning electron microscopy (LVSEM), Proc. EUREM 96, Dublin 1996 (Plyta CD).
  • [243] Zobacova J., Zobac M., Oral M., Mi.illerova I., Frank L., Correction of magnification andfocussing in a cathode lens-equipped scanning electron microscope, Scanning, Vol. 28, 2006, 155-163.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0016-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.