PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on new spectral reconstruction solutions for Fourier-transform spectrometer

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spectral reconstruction of Fourier transform spectrometer can be simply achieved by using a Fourier transform or a Fourier cosine transform. However, the traditional Fourier transform solution is carried out in the complex-number field and the result is also a complex-number sequence, which will introduce an extra-phase to the spectrum and lead to the inaccuracy of reconstructed spectral intensity. On the other hand, although researchers use a Fourier cosine transform to avoid the extra-phase problem effectively, this solution has a boundary condition problem which cannot be avoided and may also lead to the inaccuracy of the reconstructed spectral intensity. To solve the problem, an improved Hilbert transform reconstruction solution (IHTRS) and a Fourier conjugated correction reconstruction solution (FCCRS) are developed by analyzing traditional reconstruction solutions. The main thought of IHTRS is using a complex-number sequence to represent the real-number signal, doing the transform in the complex-number field, and extracting the real-number spectrum from the transform result in the end. The main thought of FCCRS is constraining the transform process in the real-number field, using the conjugated property of the Fourier transform, creating the conjugated symmetrical form of the original signal first and acquiring the conjugated symmetrical form of the real spectrum, and extracting the real spectrum from it in the end. The results of the two solutions are compared. By carrying out both the simulation and the experiment using a helium lamp, it can be concluded that the FCCRS is 3 times faster than IHTRS, while the reconstructed spectral intensity accuracy of IHTRS is 29% higher than FCCRS. Both of the two solutions can avoid either the extra-phase problem caused by a discrete Fourier transform (DFT) solution or the boundary condition caused by a discrete cosine transform (DCT) solution effectively and improve the reconstructed spectral intensity accuracy.
Słowa kluczowe
Czasopismo
Rocznik
Strony
121--133
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
autor
  • Department of Optical Engineering, School of Electronic Information and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, China
Bibliografia
  • [1] LOEWENSTEIN E.V., The history and current status of fourier transform spectroscopy, Applied Optics 5 (5), 1966, pp. 845–854.
  • [2] THURMAN S.T., FIENUP J.R., Fizeau Fourier transform imaging spectroscopy: Missing data reconstruction, Optics Express 16 (9), 2008, pp. 6631–6645.
  • [3] SELLAR R.G., RAFERT J.B., Fourier-transform imaging spectrometer with a single toroidal optic,Applied Optics 34 (16), 1995, pp. 2931–2933.
  • [4] KAWATA S., MINAMI K., MINAMI S., Superresolution of Fourier transform spectroscopy data by the maximum entropy method, Applied Optics 22 (22), 1983, pp. 3593–3598.
  • [5] LUC P., GERSTENKORN S., Fourier transform spectroscopy in the visible and ultraviolet range, Applied Optics 17 (9), 1978, pp. 1327–1331.
  • [6] TENG Y.C., RAYCE B.S.H., Quantitative Fourier transform IR photoacoustic spectroscopy of condensed phases, Applied Optics 21 (1), 1982, pp. 77–80.
  • [7] ALEKSEYEV L., NARIMANOV E., KHURGIN J., Super-resolution imaging using spatial Fourier transform infrared spectroscopy, Conference on Lasers and Electro-Optics 2009, Maryland,Baltimore, May 31, 2009, Nanophotonics and Metamaterial Symposium I, p. JWC5.
  • [8] THÉBERGE F., CHÂTEAUNEUF M., DUBOIS J., DÉSILETS S., LUSSIER L.-S., Spectral artifacts from non-uniform samples analyzed by terahertz time-domain spectroscopy, Optics Express 17 (13),2009, pp. 10841–10848.
  • [9] DUPUIS J.R., ÜNLÜ M.S., Time-domain surface profile imaging via a hyperspectral Fourier transform spectrometer, Optics Letters 33 (12), 2008, pp. 1368–1370.
  • [10] ZHAO P., MARIOTTI J. -M., DU FORESTO V.C., LÉNA P., Infrared single-mode fiber-optic Fourier-transform spectrometry and double Fourier interferometry, Applied Optics 35 (16), 1996,pp. 2897–2901.
  • [11] PISANI M., ZUCCO M.E., Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry–Perot interferometer, Optics Express 17 (10), 2009, pp. 8319–8331.
  • [12] ESKOLA S.M., STENMAN F., Interpolation of spectral data using shift theorem of the discrete Fourier transform, Applied Spectroscopy 51 (8), 1997, pp. 1179–1184.
  • [13] HEINTZMANN R., LIDKE K.A., JOVIN T.M., Double-pass Fourier transform imaging spectroscopy,Optics Express 12 (5), 2004, pp. 753–763.
  • [14] POGRIBNY W., DRECHNY M., Discrete cosine transform using modified DPCM, Proceedings of SPIE 5484, 2004, pp. 653–658.
  • [15] CASASENT D., PSALTIS D., Optical Fourier transform techniques for advanced Fourier spectroscopy systems, Applied Optics 19 (12), 1980, pp. 2034–2037.
  • [16] CHUJUN ZHENG, PENG HAN, HONGSEN CHANG, Four-quadrant spatial phase-shifting Fourier transform digital holography for recording of cosine transform coefficients, Chinese Optics Letters 4 (3), 2006, pp. 145–147.
  • [17] RUCKMONGATHAN T.N., Discrete cosine transform for driving liquid crystal displays, Journal of Display Technology 5 (7), 2009, pp. 243–249.
  • [18] SHERLOCK B.G., KAKAD Y.P., SHUKLA A., Rapid update of odd DCT and DST for real-time signal processing, Proceedings of SPIE 5809, 2005, pp. 464–471.
  • [19] REEVES R., New shift, scaling and derivative properties for the DCT, Proceedings of SPIE 3653,1999, pp. 418–428
  • [20] BALAM S.C., SCHONFELD D., New algorithm for computation of DCT through pyramidal addition,Proceedings of SPIE 5683, 2005, pp. 208–217.
  • [21] YINGSONG HU, JIANGTAO XI, CHICHARO J., ENBANG LI, ZONGKAI YANG, Discrete cosine transform-based shift estimation for fringe pattern profilometry using a generalized analysis model,Applied Optics 45 (25), 2006, pp. 6560–6567.
  • [22] GHOLAM-ALI HOSSEIN-ZADEH, HAMID SOLTANIAN-ZADEH, DCT acquisition and reconstruction of MRI, Proceedings of SPIE 3338, 1998, pp. 398–407.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0016-0011
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.