PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication of Bioactive Carbon Nonwovens for Bone Tissue Regeneration

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of tissue engineering is to repair or replace the function of defective or damaged tissue. One of the key factors is the creation of a scaffold as an artifcial extracellular matrix (ECM) for cellular attachment, proliferation and differentiation. In scaffold-based bone tissue engineering, both the porosity and mechanical properties of the scaffold are of great importance. To mimic the structure of natural ECM, three fbrous scaffolds based on composite carbon fbres containing nanohydroxyapatite were fabricated using nonwoven techniques. The overall objective of the present work was to compare and analyse the properties of needlepunched nonwoven produced from PAN and PAN/HAp fbres before and after stabilization and carboniation processes. The characterisation of the scaffold showed that after the carbonisation process, the nonwoven had an interconnective microporous structure (70-150 žm), high porosity as well as mechanical and structural integrity. Soaking the nonwoven in simulated body fuid (SBF) at body temperature formed a bone-like apatite on the fbre surface. The formation of the bone-like apatite demonstrates the potential of nonwovens for integration with bone.
Rocznik
Strony
66--72
Opis fizyczny
Bibliogr. 22 poz.,
Twórcy
autor
autor
  • ATH University of Bielsko-Biala, Faculty of Materials and Environmental Sciences, Institute of Textile Engineering and Polymer Science. Department of Polymer Materials. ul. Willowa 2, 43-309 Bielsko-Biała, Poland,
Bibliografia
  • 1. Jose M. V., Thomas V., Johnson K. T., Dean D. R., Nyairo E.; Aligned PLGA/HA nanofbrous nanocomposites scaffolds for bone tissue engineering. Acta Biomaterialia. Vol. 5, (2009) pp. 305-315.
  • 2. Murugan R., Ramakrishna S.; Development of nanocomposites for bone grafting. Composites Science and Technology. Vol. 65 (2005) pp. 2385–2406.
  • 3. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials. Vol. 28 (2007) pp. 5058–5067.
  • 4. Zhongli Shi et al.; Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomaterialia. Vol. 5 (2009) pp. 338–345.
  • 5. Webster T. J., Siegel R. W., Bizios R.; Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. Vol. 21 (2000) pp. 1803–10.
  • 6. Blazewicz M.; Carbon materials in the treatment of soft and hard injuries. European Cells and Materials. Vol. 2 (2001) pp. 21-29.
  • 7. Bokros J. C., Arkins R. J., Shim H. S., Houbold A. D., Agrawal N .K.; Carbon in prosthetic devices. In: Deviney ML, O’Grady TM, editors. Petroleum derived carbons.; American Chemical Society; Washington DC 1976.
  • 8. Adams D., Williams D. F.; Carbon fberreinforced carbon as a potential implant material. Journal of Biomedical Research Vol. 12 (1978) pp. 35-42.
  • 9. Mortier J., Engelhardt M.; Foreign body reaction in carbon fber prosthesis implantation in the knee joint-case report and review of the literature. Zeits fur Orth Ihre Grenz Vol. 138 (2000) pp. 390-394.
  • 10. Debnath U. K., Fairclough J. A., Williams R.. L.; Long-term local effects of carbon fbre in the knee. The Knee Vol. 11 (2004) pp. 259-264.
  • 11. Mikolajczyk T., Bogun M., Blazewicz M., Piekarczyk I. (Rajzer); Effect of spinning conditions on the structure and properties of PAN fbres containing nano-hydroxy-apatite. Journal Applied Polymer Science Vol. 100 (2006) pp. 2881-2888.
  • 12. Rajzer I.; Badania nad włóknistymi materiałami węglowymi przeznaczonymi na podłoża dla inżynierii tkankowej. Dr Thesis, AGH 2006.
  • 13. Rajzer I., Rom M., Błażewicz M.; Production of Carbon Fibers with Ceramic Powders for Medical Applications. Fibers and Polymers; Vol. 11(4) 2010 pp. 615-624.
  • 14. Błażewicz M., Rajzer I., Menaszek E., Haberko K.; Polymer and carbon fbres with HAp nanopowder, properties and biocompatibility of degradation products. European Cells and Materials. Vol. 7(1) 2004 p. 47.
  • 15. Rajzer I., Menaszek E., Bacakova L., Rom M., Błażewicz M.; In vitro and in vivo studies on biocompatibility of carbon fbers. Journal of Materials Science:Materials in Medicine; Vol. 21 (2010) pp. 2611-2622.
  • 16. Haberko K. et al.; Natural hydroxyapatite – its behaviour during heat treatment.Journal of the European Ceramic Society Vol. 26 (2006) pp. 537-542.
  • 17. Mikolajczyk T., Rabiej S., Szparaga G., Boguń M., Fraczek-Szczypta A.,Błażewicz S.; Strength Properties of Polyacrylonitrile (PAN) Fibres Modifed with Carbon Nanotubes with Respect to Their Porous and Supramolecular Structure.FIBRES & TEXTILES in Eastern Europe Vol. 17, No. 6 (77) 2009 pp. 13-20.
  • 18. Boguń M., Mikołajczyk T., Kurzak A., Błażewicz M., Rajzer I.; Infuence of the As-spun Draw Ratio on the Structure and Properties of PAN Fibres Including Montmorillonite. FIBRES & TEXTILES in Eastern Europe Vol. 14, No. 2 (56) 2006 pp. 13-16.
  • 19. Grzybowska-Pietras J., Malkiewicz J.; Infuence of Technologic Parameters on Filtration Characteristics of Nonwoven Fabrics Obtained by Padding. FIBRES & TEXTILES in Eastern Europe Vol. 15, No. 5 - 6 (64 - 65) 2007 pp. 82-85.
  • 20. Kokubo T., Takadama H.; How useful is SBF bioactivity? Biomaterials. Vol. 27(15)2006 pp. 2907–2915.
  • 21. Gelinskya M., Welzelb P. B., Simonc P.,Bernhardta A., Königa U.; Porous three-dimensional scaffolds made of mineralised collagen: Preparation and properties of a biomimetic nanocomposite materialfor tissue engineering of bone. Chemical Engineering Journal. Vol. 137 (1) 2008 pp. 84-96.
  • 22. Chu P. K., Liu X.; Biomaterials Fabrication and Processing Handbook. CRC Press Taylor & Francis Group, USA 2008, pp. 3-34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0015-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.