Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Quasi-isotropic approximation (QIA) of geometrical optics is outlined, which describes properties of electromagnetic waves in weakly anisotropic media, including weakly anisotropic fibers, liquid crystals and weakly magnetized plasma. QIA equations stem directly from the Maxwell equations and have the form of coupled differential equations of the first order for transverse components of the electromagnetic field. Being applied to magnetized plasma, QIA describes combined action of Faraday and Cotton-Mouton phenomena and serves as a theoretical background of plasma polarimetry in FIR and microwave bands. The coupled equations of QIA can be reduced to a single equation for complex polarization angle (CPA), which characterizes all the parameters of polarization ellipse. At the same time, the equation for CPA allows obtaining equations for evolution of the traditional parameters of polarization ellipse. Besides, QIA makes it possible to derive in a consistent way Segre's equation for the Stokes vector evolution, which is widely used in microwave and FIR plasma polarimetry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
975--989
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
- Institute of Physics, Maritime University of Szczecin, Wały Chrobrego 1-2,70-500 Szczecin, Poland
Bibliografia
- [1] KRAVTSOV YU.A., Quasi-isotropic geometrical optics approximation, Soviet Physics – Doklady 13(11), 1969, pp. 1125–1127.
- [2] KRAVTSOV YU.A., NAIDA O.N., FUKI A.A., Waves in weakly anisotropic 3D inhomogeneous media:Quasi-isotropic approximation of geometrical optics, Physics–Uspekhi 39(2), 1996, pp. 129–134.
- [3] FUKI A.A., KRAVTSOV YU.A., NAIDA O.N., Geometrical Optics of Weakly Anisotropic Media,Gordon and Breach, London, New York, 1997.
- [4] KRAVTSOV YU.A., ORLOV YU.I., Geometrical Optics of Inhomogeneous Media, Springer Verlag,Berlin, Heidelberg, 1990.
- [5] KRAVTSOV YU.A., Geometrical Optics in Engineering Physics, Alpha Science, London, 2005.
- [6] RAMACHANDRAN G.N., RAMASESHAN S., Crystal Optics, [In] Encyclopedia of Physics, Vol. 25/1,Springer, Berlin, 1961.
- [7] AZZAM R.M.A., Propagation of partially polarized light through anisotropic media with or without depolarization: A differential 4×4 matrix calculus, Journal of the Optical Society of America 68(12), 1978, pp. 1756–1767.
- [8] SEGRE S.E., A review of plasma polarimetry – theory and methods, Plasma Physics and Controlled Fusion 41(2), 1999, pp. R57–R100.
- [9] SEGRE S.E., New formalism for the analysis of polarization evolution for radiation in a weakly nonuniform, fully anisotropic medium: A magnetized plasma, Journal of the Optical Society of America A 18(10), 2001, pp. 2601–2606.
- [10] KRAVTSOV YU.A., NAIDA O.N., Linear transformation of electromagnetic waves in three--dimensional inhomogeneous magneto-active plasma, Soviet Physics – JETP 44(1), 1976, pp. 122–126.
- [11] KRAVTSOV YU.A., BIEG B., Double passage of electromagnetic waves through magnetized plasma:approximation of independent normal waves, Central European Journal of Physics (in press).
- [12] CZYZ Z.H., BIEG B., KRAVTSOV YU.A., Complex polarization angle: Relation to traditional polarization parameters and application to microwave plasma polarimetry, Physics Letters A 368(1–2), 2007, pp. 101–107.
- [13] BLIOKH K.YU., FROLOV D.YU., KRAVTSOV YU.A., Non-Abelian evolution of electromagnetic waves in a weakly anisotropic inhomogeneous medium, Physical Review A 75(5), 2007, p. 053821.
- [14] KRAVTSOV YU.A., BIEG B., BLIOKH K.YU., Stokes-vector evolution in a weakly anisotropic inhomogeneous medium, Journal of the Optical Society of America A 24(10), 2007, pp. 3388–3396.
- [15] POPOV M.M., Vestnik Leningradskogo Universiteta (Bulletin of the Leningrad University), Vol. 22, 1969, pp. 44–54 (in Russian).
- [16] BABICH V.M., BULDYREV V.S., Short-Wavelength Diffraction Theory: Asymptotic Methods, Springer Verlag, Berlin, 1990.
- [17] GINZBURG V.I., Propagation of Electromagnetic Waves in Plasma, Gordon and Breach, New York, 1970.
- [18] LANDAU L.D., LIFSHITS E.M., Quantum Mechanics: Non-Relativistic Theory, Pergamon Press, Oxford, 1977.
- [19] KRAVTSOV YU.A., BIEG B., Polarization transformations in the vicinity of orthogonality point in the inhomogeneous magnetized plasma, Proceedings of SPIE 7141, 2008, p. 71410K.
- [20] BORN M., WOLF E., Principles of Optics, 7th Edition, University Press, Cambridge, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0014-0044