PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gaussian beam diffraction in inhomogeneous media of cylindrical symmetry

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The method of paraxial complex geometrical optics (PCGO) is presented, which describes Gaussian beam (GB) diffraction in smoothly inhomogeneous media of cylindrical symmetry, including fibers. PCGO reduces the problem of Gaussian beam diffraction in inhomogeneous media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, PCGO radically simplifies the description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. For the paraxial on-axis Gaussian beam propagation in inhomogeneous fibers, we compare PCGO solutions with numerical results for finite differences beam propagation method (FD-BPM). The PCGO method is shown to provide over 100-times higher rate of calculation than FD-BPM at comparable accuracy. This paper presents PCGO analytical solutions for width evolution of cylindrically symmetric GB in quadratic graded-index fiber, which is obtained in less complicated way comparing to the methods of wave optics. Besides, the influence of initial curvature of the wave front on GB evolution in graded-index fiber is discussed in this paper.
Czasopismo
Rocznik
Strony
705--718
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Institute of Physics, West Pomeranian University of Technology, 70-310 Szczecin, Poland
Bibliografia
  • [1] KRAVTSOV YU.A., Complex rays and complex caustics, Radiophysics and Quantum Electronics 10(9–10), 1967, pp. 719–730.
  • [2] KELLER J.B., STREIFER W., Complex rays with application to Gaussian beams, Journal of the Optical Society of America 61(1), 1971, pp. 40–43.
  • [3] DESCHAMPS G.A., Gaussian beam as a bundle of complex rays, Electronics Letters 7(23), 1971,pp. 684–685.
  • [4] KRAVTSOV YU.A., FORBES G.W., ASATRYAN A.A., Theory and applications of complex rays,[In] Progress in Optics, [Ed.] E. Wolf, Vol. 39, Elsevier, Amsterdam, 1999, pp. 3–62.
  • [5] CHAPMAN S.J., LAWRY J.M.H., OCKENDON J.R., TEW R.H., On the theory of complex rays, SIAM Review 41(3), 1999, pp. 417–509.
  • [6] KRAVTSOV YU.A., BERCZYNSKI P., Gaussian beams in inhomogeneous media: A review, Studia Geophysica et Geodaetica 51(1), 2007, pp. 1–36.
  • [7] KRAVTSOV YU.A., Geometrical Optics in Engineering Physics, Alpha Science International, UK,2005.
  • [8] KRAVTSOV YU.A., BERCZYNSKI P., Description of the 2D Gaussian beam diffraction in a free space in frame of eikonal-based complex geometric optics, Wave Motion 40(1), 2004, pp. 23–27.
  • [9] BERCZYNSKI P., KRAVTSOV YU.A., Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics, Physics Letters A 331(3–4),2004, pp. 265–268.
  • [10] BERCZYNSKI P., BLIOKH K.YU., KRAVTSOV YU.A., STATECZNY A., Diffraction of Gaussian beam in three-dimensional smoothly inhomogeneous medium: Eikonal-based complex geometrical optics approach, Journal of the Optical Society of America A 23(6), 2006, pp. 1442–1451.
  • [11] ARNAUD J.A., Beams and Fiber Optics, Academic Press, New York, 1976.
  • [12] KOGELNIK H., On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation, Applied Optics 4(12), 1965, pp. 1562–1569.
  • [13] BABICH V.M., BULDYREV V.S., Asymptotic Methods in Problem of Diffraction of Short Waves, Nauka,Moscow, 1972; (English translation: BABICH V.M., BULDYREV V.S., Short-Wavelength Diffraction Theory: Asymptotic Methods, Springer Verlag, Berlin, Heidelberg, 1991).
  • [14] PERMITIN G.V., SMIRNOV A.I., Quasioptics of smoothly inhomogeneous isotropic media, Journal of Experimental and Theoretical Physics (JETP) 82(3), 1996, pp. 395–402.
  • [15] FEIT M.D., FLECK J.A., Light propagation in graded-index optical fibers, Applied Optics 17(24),1978, pp. 3990–3998.
  • [16] CHUNG Y., DAGLI N., An assessment of finite difference beam propagation method, IEEE Journal of Quantum Electronics 26(8), 1990, pp. 1335–1339.
  • [17] HADLEY G.R., Transparent boundary condition for beam propagation, Optics Letters 16(9), 1991,pp. 624–626.718 P. BERCZYŃSKI, YU.A. KRAVTSOV, G. ŻEGLIŃSKI
  • [18] HADLEY G.R., Transparent boundary condition for the beam propagation method, IEEE Journal of Quantum Electronics 28(1), 1992, pp. 363–370.
  • [19] YEVICK D., HERMANSSON B., Efficient beam propagation techniques, IEEE Journal of Quantum Electronics 26(1), 1990, pp. 109–112.
  • [20] OHDOKO K., ISHIGURE T., KOIKE Y., Propagating mode analysis and design of waveguide parameters of GI-POF for very short-reach network use, IEEE Photonics Technology Letters 17(1), 2005,pp. 79–81.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0014-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.