PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fisher’s linear discriminant (FLD) and support vector machine (SVM) in non-negative matrix factorization (NMF) residual space for face recognition

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel method of Fisher’s linear discriminant (FLD) in the residual space is put forward for the representation of face images for face recognition, which is robust to the slight local feature changes. The residual images are computed by subtracting the reconstructed images from the original face images, and the reconstructed images are obtained by performing non-negative matrix factorization (NMF) on original images. FLD is applied to the residual images for extracting FLD subspace and the corresponding coefficient matrices. Furthermore, features are obtained by mapping the residual image to FLD subspace. Finally, the features are utilized to train and test support vector machines (SVMs) for face recognition. The computer simulation illustrates that this method is effective on the ORL database and the extended Yale face database B.
Czasopismo
Rocznik
Strony
693--704
Opis fizyczny
Bibliogr., 21 poz.
Twórcy
autor
autor
autor
autor
  • Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian, 116622, China
Bibliografia
  • [1] KIRBY M., SIROVICH L., Application of the Karhunen–Loeve procedure for the characterization of human faces, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 1990,pp. 103–108.704 CHANGJUN ZHOU et al.
  • [2] TURK M.A., PENTLAND A.P., Eigenfaces for recognition, Journal of Cognitive Neuroscience 3(1), 1991, pp. 71–86.
  • [3] BELHUMEUR P.N., HESPANHA J.P., KRIEGMAN D.J., Eigenfaces vs. Fisherfaces: recognition using class specific linear projection, IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 1997, pp. 711–720.
  • [4] AN G.Y., RUAN Q.Q., A novel mathematical model for enhanced Fisher’s linear discriminant and its application to face recognition, The 18th International Conference on Pattern Recognition, 2006.
  • [5] COMON P., Independent component analysis. A new concept?, Signal Processing 36(3), 1994,pp. 287–314.
  • [6] LEE D.D., SEUNG H.S., Learning the parts of objects by non-negative matrix factorization,Nature 401, 1999, pp. 788–791.
  • [7] WANG Y., JIA Y.D., HU C.B., TURK M., Fisher non-negative matrix factorization for learning local features, Asian Conference on Computer Vision, Korea, 2004.
  • [8] DUDA R.O., HART P.E., STORK D.G., Pattern Classification, Wiley-Interscience, New York, 2001.
  • [9] KIM T.K., KIM H., HWANG W., KITTLER J., Independent component analysis in a facial local residue space, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recogniton, 2003, pp. 1063–1069.
  • [10] BURGES C.J.C., A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery 2(2), 1998, pp. 121–167.
  • [11] CRISTIANINI N., TAYLOR J.S., An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, 2004, pp. 82–108.
  • [12] VAPNIK V.N., Statistical Learning Theory, Wiley, New York, 1998.
  • [13] PONTIL M., VERRI A., Support vector machines for 3-D object recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence 20(6), 1998, pp. 637–646.
  • [14] CHEN W., MENG JOO ER, SHIQIAN WU, Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithmic domain, IEEE Transactions on Systems, Man, and Cybernetics, Part B 36(2), 2006, pp. 458–466.
  • [15] XU Y.Q., LI B.C., WANG B., Face recognition by fast independent component analysis and genetic algorithm, Proceedings of the Fourth International Conference on Computer and Information Technology (CIT’04), 2004
  • [16] SAMARIA F., HARTER A., Parameterisation of a stochastic model for human face identification,2nd IEEE Workshop on Applications of Computer Vision, Sarasota, FL, 1994.
  • [17] LEE K.C., HO J., KRIEGMAN D.J., Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 2005, pp. 684–698.
  • [18] MA J., ZHAO Y., AHALT S., OSU SVM Classier Matlab Toolbox (ver 3.00), http://eewww.eng. ohiostate.edu/maj/osu svm, 2002.
  • [19] CHANG C.C., LIN C.J., LIBSVM: a library for support vector machines, http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.
  • [20] WANG C.J., ZHANG Q., WEI X.P., ZHOU C.J., Face recognition based on NMF in a residual image, Proceedings of the 4th International Conference on Impulsive and Hybrid Dynamical Systems, 2007, pp. 2125–2128.
  • [21] GEORGHIADES A.S., BELHUMEUR P.N., KRIEGMAN D.J., From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 2001, pp. 643–660.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0014-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.