PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multiwavelength micropulse lidar for atmospheric aerosol investigation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiwavelength micropulse lidar (MML) designed for continuous atmospheric sounding is presented. In its optical emitter, a diode pumped pulsed Nd:YAG laser is used. The laser generates three wavelengths: 1064, 532 and 355 nm. Energies of light pulses are about 30, 15 and 7 J, respectively, while their repetition rate is 2 kHz. Returning light is collected by a Cassegrain telescope with the mirror of 170 mm in diameter. Then, the signal is spectrally separated by a polichromator built with dielectric interference and colour filters. Detection of the signals is performed with three photomultipliers and a multiscaling photon counter. Preliminary results of investigation of aerosol properties during COAST 2009 experiment on the Baltic Sea are presented.
Czasopismo
Rocznik
Strony
623--632
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
autor
autor
  • Atmospheric Physics Division, Institute of Geophysics, University of Warsaw, ul. Pasteura 7, 02-093 Warsaw, Poland
Bibliografia
  • [1] KOVALEV V.A., EICHINGER W.E., Elastic Lidar: Theory, Practice, and Analysis Methods,Wiley-Interscience, 2004.
  • [2] CAMPBELL J.R., HLAVKA D.L., WELTON E.J., FLYNN C.J., TURNER D.D., SPINHIRNE J.D.,SCOTT III V.S., HWANG I.H., Full-time, eye-safe cloud and aerosol lidar observation atatmospheric radiation measurement program sites: Instruments and data processing, Journalof Atmospheric and Oceanic Technology 19(4), 2002, pp. 431–442.
  • [3] WELTOM E.J., CAMPBELL J.R., BERKOFF T.A., VALENCIA S., SPINHIME J.D., HOLBEN B., TSAY S.-C.,The NASA Micro-Pulse Lidar NETWORK (MPLNET): Co-location of lidars with aeronet sunphotometers and related earth science applications, 85th AMS Annual Meeting, American Meteorological Society – Combined Preprints, 2005, pp. 5165–5169.
  • [4] BECKER W., Advanced Time-Correlated Single Photon Counting Techniques, Springer, 2005.
  • [5] ZAVYALOV V.V., MARCHANT C., BINGHAM G.E., WILKERSON T.D., SWASEY J., ROGERS C., AHLSTROM D., TIMOTHY P., Retrieval of physical properties of particulate emission from animal feeding operations using three-wavelength elastic lidar measurements, Proceedings of SPIE 6299, 2006, p. 62990S.
  • [6] STELMASZCZYK K., DELL’AGLIO M., CHUDZYNSKI S., STACEWICZ T., WÖSTE L., Analytical function for lidar geometrical compression form-factor calculations, Applied Optics 44(7), 2005,pp. 1323–1331.
  • [7] MEASURES R.M., Laser Remote Sensing Fundamentals and Applications, Krieger Publishing Company, 1992.
  • [8] OTT H.W., Noise Reduction Techniques in Electronic Systems, Wiley-Interscience, 1988.
  • [9] JAGODNICKA A.K., STACEWICZ T., KARASINSKI G., POSYNIAK M., MALINOWSKI S.P., Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol, Applied Optics 48(4),2009, pp. B8–B16.
  • [10] PIADLOWSKI M., SWACZYNA P., STACHLEWSKA I., Diurnal and seasonal cycle of the planetary boundary layer over Warsaw, OTEM 2009 Proceedings, pp. 36–39.
  • [11] FERNALD F.G., Analysis of atmospheric lidar observations: Some comments, Applied Optics 23(5),1984, pp. 652–653.632 M. POSYNIAK et al.
  • [12] FRÖHLICH C., SHAW G.E., New determination of Rayleigh scattering in the terrestrial atmosphere,Applied Optics 19(11), 1980, pp. 1773–1775.
  • [13] BODHAINE B.A., WOOD N.B., DUTTON E.G., SLUSSER J.R., On Rayleigh optical depth calculation,Journal of Atmospheric and Oceanic Technology 16(11), 1999, pp. 1854–1861.
  • [14] MORYS M., MIMS III F.M., HAGERUP S., ANDERSON S.E., BAKER A., KIA J., WALKUP T., Design,calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer,Journal of Geophysical Research 106(D13), 2001, pp. 14573–14582.
  • [15] MARKOWICZ K.M., FLATAU P.J., KARDAŚ A.E., REMISZEWSKA J., STELMASZCZYK K., WOESTE L.,Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, Journal of Atmospheric and Oceanic Technology 25(6), 2008, pp. 928–944.
  • [16] KARDAS A.E., MARKOWICZ K.M., STELMASZCZYK K., KARASINSKI G., MALINOWSKI S.P., STACEWICZ T.,WOESTE L., HOCHHERTZ C., Saharan aerosol sensed over Warsaw by backscatter depolarization lidar, Optica Applicata 40(1), 2010, pp. 219–237.
  • [17] PIETRUCZUK A., CHAIKOVSKY A.P., Properties of fire smoke in Eastern Europe measured by remote sensing methods, Proceedings of 6745, 2007, p. 67451T.
  • [18] PAPAYANNIS, A., AMIRIDIS V., MONA L., TSAKNAKIS G., BALIS D., BÖSENBERG J., CHAIKOVSKI A.,DE TOMASI F., GRIGOROV I., MATTIS I., MITEV V., MÜLLER D., NICKOVIC S., PÉREZ C., PIETRUCZUK A.,PISANI G., RAVETTA F., RIZI V., SICARD M., TRICKL T., WIEGNER M., GERDING M., MAMOURI R.E.,D’AMICO G., PAPPALARDO G., Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002), Journal of Geophysical Research 113, 2008, p. D10204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0014-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.