PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical study of electron affinities for selected diatomic molecules

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ab initio Hartree–Fock (HF) methods and different hybrid density functional theories (DFT), i.e., LSDA, BPV86, B3LYP, B3PV91, MPW1PW91, PBEPBE, PBE1PBE, HCTH, THCTH and TPSSTPSS, have been used to evaluate electron affinities (EAs) for selected diatomic molecules. Computations have also been made at the high level ab initio quadratic complete basis set (CBS-Q) method. The results show that HF calculations underestimate and DFT overestimate EA’s values in comparison to experimental data. We obtain the best agreement with experimental values of EA’s in DFT calculations with PBE1PBE, TPSSTPSS, THCTH and PBE1PBE functionals for OH, NaBr, LiBr and F2 molecules, respectively.
Słowa kluczowe
Czasopismo
Rocznik
Strony
601--608
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Institute of Physics, Pomeranian University, Arciszewskiego 22, 76-200 Słupsk, Poland
Bibliografia
  • [1] MASSEY H.S.W., BURHOP E.H.S., Electronic and Ionic Impact Phenomena, Vols. I and II, Clarendon Press, Oxford, 1969.
  • [2] CHRISTOPHOROU L.G. [Ed.], Electron–Molecule Interactions and Their Applications, Vols. 1 and 2, Academic Press, New York, 1984.
  • [3] KARWASZ G.P., BRUSA R.S., ZECCA A., One century of experiments on electron–atom and molecule scattering. A critical review of integral cross-sections. III. Hydrocarbons and halides, La Rivista delNuovo Cimento 24(4), 2001, pp. 1–101.
  • [4] KARWASZ G.P., ZECCA A., BRUSA R.S., Electron Scattering with Molecules. Total, Landolt–Börstein New Series, Volume I/17, Photon and Electron Interaction, with Atoms, Molecules and Ions,Chapter VI.1., Springer-Verlag, Berlin, Heidelberg, 2003, pp. 6.1–6.51.
  • [5] JURSIC B.S., High level of ab initio and hybrid density functional theory study of electron affinities for some multi-spin diatomic molecules, Journal of Molecular Structure (Theochem) 453(1–3), 1998,pp. 149–152.
  • [6] FRISCH M.J., TRUCKS G.W., SCHLEGEL H.B., SCUSERIA G.E., ROBB M.A., CHEESEMAN J.R.,MONTGOMERY J.A. JR., VREVEN T., KUDIN K.N., BURANT J.C., Gaussian Inc.,Wallingford, CT, USA 2004.
  • [7] FRISCH M.J., POPLE J.A., BINKLEY J.S., Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets, Journal of Chemical Physics 80(7), 1984, p. 3265.
  • [8] GUNNARSSON O., LUNDQVIST B.I., Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Physical Review B 13(10), 1976, pp. 4274–4298. Theoretical study of electron affinities for selected diatomic molecules 607
  • [9] BECKE A.D., Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics 98(7), 1993, pp. 5648–5652.
  • [10] VOSKO S.H., WILK L., NUSAIR M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Canadian Journal of Physics 58(8), 1980, pp. 1200–1211.
  • [11] PERDEW J.P., Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Physical Review B 33(12), 1986, pp. 8822–8824.
  • [12] LEE C., YANG W., PARR R.G., Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37(2), 1988, pp. 785–789.
  • [13] BURKE K., PERDEW J. P., WANG Y., [In] Electronic Density Functional Theory: Recent Progress and New Directions, [Eds.] Dobson J.F., Vignale G., Das M.P., Plenum, 1998.
  • [14] PERDEW J.P., [In] Electronic Structure of Solids’91, [Eds.] Ziesche P., Eschrig H., Akademie Verlag,Berlin, 1991, p. 11.
  • [15] PERDEW J.P., CHEVARY J.A., VOSKO S.H., JACKSON K.A., PEDERSON M.R., SINGH D.J., FIOLHAIS C.,Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B 46(11), 1992, pp. 6671–6687.
  • [16] PERDEW J.P., CHEVARY J.A., VOSKO S.H., JACKSON K.A., PEDERSON M.R., SINGH D.J., FIOLHAIS C., Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B 48(7), 1993, p. 4978.
  • [17] PERDEW J.P., BURKE K., WANG Y., Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physical Review B 54(23), 1996, pp. 16533–16539.
  • [18] ADAMO C., BARONE V., Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models, Journal of Chemical Physics 108(2), 1998, pp. 664–675.
  • [19] PERDEW J.P., BURKE K., ERNZERHOF M., Generalized gradient approximation made simple, Physical Review Letters 77(18), 1996, pp. 3865–3868.
  • [20] PERDEW J.P., BURKE K., ERNZERHOF M., Erratum: Generalized gradient approximation made simple,Physical Review Letters 78(7), 1997, p. 1396.
  • [21] HAMPRECHT F.A., COHEN A.J., TOZER D.J., HANDY N.C., Development and assessment of new exchange-correlation functionals, Journal of Chemical Physics 109(15), 1998, pp. 6264–6271.
  • [22] BOESE A.D., DOLTSINIS N.L., HANDY N.C., SPRIK M., New generalized gradient approximation functionals, Journal of Chemical Physics 112(4), 2000, pp. 1670–1678.
  • [23] BOESE A.D., HANDY N.C., A new parametrization of exchange–correlation generalized gradient approximation functionals, Journal of Chemical Physics 114(13), 2001, pp. 5497–5503.
  • [24] TAO J.M., PERDEW J.P., STAROVEROV V.N., SCUSERIA G.E., Climbing the density functional ladder:Nonempirical meta-generalized gradient approximation designed for molecules and solids, Physical Review Letters 91(14), 2003, p. 146401.
  • [25] MONTGOMERY J.A., OCHTERSKI J.W., PETERSSON G.A., A complete basis set model chemistry.IV. An improved atomic pair natural orbital method, Journal of Chemical Physics 101(7), 1994,pp. 5900–5909.
  • [26] HOUT JR. R.F., LEVI B.A., HEHRE W.J., Effect of electron correlation on theoretical vibrational frequencies, Journal of Computational Chemistry 3(2), 1982, pp. 234–250.
  • [27] WENTHOLD P.G., SQUIRES R.R., Bond dissociation energies of F2– and HF2–A gas-phase .experimental and G2 theoretical study, The Journal of Physical Chemistry 99(7), 1995,pp. 2002–2005.
  • [28] ARTAU A., NIZZI K.E., HILL B.T., SUNDERLIN L.S., WENTHOLD P.G., Bond dissociation energy in trifluoride ion, Journal of the American Chemical Society 122(43), 2000, pp. 10667–10670.
  • [29] HARLAND P.W., FRANKLIN J.L., Partitioning of excess energy in dissociative resonance capture processes, Journal of Chemical Physics 61(5), 1974, pp. 1621–1636.608 T. WRÓBLEWSKI, K. HUBISZ, J. ANTONOWICZ
  • [30] SMITH J.R., KIM J.B., LINEBERGER W.C., High-resolution threshold photodetachment spectroscopy of OH–, Physical Review A 55(3), 1997, pp. 2036–2043.
  • [31] MILLER T.M., LEOPOLD D.G., MURRAY K.K., LINEBERGER W.C., Electron affinities of the alkali halides and the structure of their negative ions, Journal of Chemical Physics 85(5), 1986,pp. 2368–2375.
  • [32] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2008, National Institute of Standards and Technology, Gaithersburg, MD 20899; http://webbook.nist.gov/chemistry
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0014-0007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.