PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optical surface devices for atomic and atom physics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applications in basic science of optical surface devices for atoms are reviewed, with the emphasis on the optical dipole mirrors. The example of experimental realization of such a mirror constructed in our group is shortly presented. Some methods used in its characterization are shown.
Czasopismo
Rocznik
Strony
535--546
Opis fizyczny
Bibliogr. 59 poz.
Twórcy
autor
autor
autor
autor
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland
Bibliografia
  • [1] DALIBARD J., COHEN-TANNOUDJI C., Dressed-atom approach to atomic motion in laser light: The dipole force revisited, Journal of the Optical Society of America B 2(11), 1985, pp. 1707–1720.
  • [2] COOK R.J., HILL R.K., An electromagnetic mirror for neutral atoms, Optics Communications 43(4), 1982, pp. 258–260.
  • [3] BALYKIN V.I., LETOKHOV V.S., OVCHINNIKOV YU.B., SIDOROV A.I., Reflection of an atomic beam from a gradient of an optical field, JETP Letters 45(6), 1987, pp. 353–356.
  • [4] KASEVICH M.A., WEISS D.S., CHU S., Normal-incidence reflection of slow atoms from an optical evanescent wave, Optics Letters 15(11), 1990, pp. 607–609.544 D. BARTOSZEK et al.
  • [5] KAWALEC T., KIERSNOWSKI K., FIUTOWSKI J., DOHNALIK T., Flexible optical dipole mirror for cold atoms, Acta Physica Polonica A 114(4), 2008, pp. 721–730.
  • [6] VOIGT D., WOLSCHRIJN B.T., JANSEN R., BHATTACHARYA N., SPREEUW R.J.C., VAN LINDEN VAN DEN HEUVELL H.B., Observation of radiation pressure exerted by evanescent waves, Physical Review A
  • [7] SÖDING J., GRIMM R., OVCHINNIKOV YU.B., Gravitational laser trap for atoms with evanescent-wave cooling, Optics Communications 119(5–6), 1995, pp. 652–662.
  • [8] LANDRAGIN A., COURTOIS J.-Y., LABEYRIE G., VANSTEENKISTE N., WESTBROOK C.I., ASPECT A., Measurement of the van der Waals force in an atomic mirror, Physical Review Letters 77(8), 1996, pp. 1464–1467.
  • [9] HENKEL C., MØLMER K., KAISER R., VANSTEENKISTE N., WESTBROOK C.I., ASPECT A., Diffuse atomie reflection at a rough mirror, Physical Review A 55(2), 1997, pp. 1160–1178.
  • [10] LANDRAGIN A., LABEYRIE G., HENKEL C., KAISER R., VANSTEENKISTE N., WESTBROOK C.I., ASPECT A., Specular versus diffuse reflection of atoms from an evanescent-wave mirror, Optics Letters 21(19),1996, pp. 1591–1593.
  • [11] SAVALLI V., STEVENS D., ESTÈVE J., FEATONBY P.D., JOSSE V., WESTBROOK N., WESTBROOK C.I., ASPECT A., Specular reflection of matter waves from a rough mirror, Physical Review Letters 88(25), 2002, p. 250404.
  • [12] ESSLINGER T., WEIDEMÜLLER M., HEMMERICH A., HÄNSCH T.W., Surface-plasmon mirror for atoms, Optics Letters 18(6), 1993, pp. 450–452.
  • [13] FERON S., REINHARDT J., LE BOITEUX S., GORCEIX O., BAUDON J., DUCLOY M., ROBERT J., MINIATURA CH., NIC CHORMAIC S., HABERLAND H., LORENT V., Reflection of metastable neon atoms by a surface plasmon wave, Optics Communications 102(1–2), 1993, pp. 83–88.
  • [14] SEIFERT W., ADAMS C.S., BALYKIN V.I., HEINE C., OVCHINNIKOV YU., MLYNEK J., Reflection of metastable argon atoms from an evanescent wave, Physical Review A 49(5), 1994, pp. 3814–3823.
  • [15] KRETSCHMANN E., The determination of the optical constants of metals by excitation of surface plasmons, Zeitschrift für Physik A 241(4), 1971, pp. 313–324.
  • [16] BENNETT C.R., KIRK J.B., BABIKER M., Theory of evanescent mode atomic mirrors with a metallic layer, Physical Review A 63(3), 2001, p. 033405.
  • [17] GAUCK H., HARTL M., SCHNEBLE D., SCHNITZLER H., PFAU T., MLYNEK J., Quasi-2D gas of laser cooled atoms in a planar matter waveguide, Physical Review Letters 81(24), 1998, pp. 5298–5301.
  • [18] SCHNEBLE D., HASUO M., ANKER T., PFAU T., MLYNEK J., Integrated atom-optical circuit with continuous-wave operation, Journal of the Optical Society of America B 20(4), 2003, pp. 648–651.
  • [19] GARCÍA-SEGUNDO C., YAN H., ZHAN M.S., Atom trap with surface plasmon and evanescent field, Physical Review A 75(3), 2007, p. 030902(R).
  • [20] HENKEL C., WALLIS H., WESTBROOK N., WESTBROOK C.I., ASPECT A., SENGSTOCK K., ERTMER W., Theory of atomic diffraction from evanescent waves, Applied Physics B 69(4), 1999, pp. 277–289.
  • [21] STEANE A., SZRIFTGISER P., DESBIOLLES P., DALIBARD J., Phase modulation of atomic de Broglie waves, Physical Review Letters 74(25), 1995, pp. 4972–4975.
  • [22] ARNDT M., SZRIFTGISER P., DALIBARD J., STEANE A.M., Atom optics in the time domain, Physical Review A 53(5), 1996, pp. 3369–3378.
  • [23] SZRIFTGISER P., GUÉRY-ODELIN D., ARNDT M., DALIBARD J., Atomic wave diffraction and interferencje using temporal slits, Physical Review Letters 77(1), 1996, pp. 4–7.
  • [24] CASIMIR H.B.G., POLDER D., The influence of retardation on the London–van der Waals forces, Physical Review 73(4), 1948, pp. 360–372.
  • [25] DZYALOSHINSKII I.E., LIFSHITZ E.M., PITAEVSKII L.P., The general theory of van der Waals forces, Advances in Physics 10(38), 1961, pp. 165–209.
  • [26] ONOFRIO R., Casimir forces and non-Newtonian gravitation, New Journal of Physics 8, 2006, p. 237.
  • [27] DIMOPOULOS S., GERACI A.A., Probing submicron forces by interferometry of Bose–Einstein condensed atoms, Physical Review D 68(12), 2003, p. 124021.Optical surface devices for atomic and atom physics 545
  • [28] ANTEZZA M., PITAEVSKII L. P., STRINGARI S., Effect of the Casimir–Polder force on the collective oscillations of a trapped Bose–Einstein condensate, Physical Review A 70(5), 2004, p. 053619.
  • [29] HARBER D.M., OBRECHT J.M., MCGUIRK J.M., CORNELL E.A., Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose–Einstein condensate, Physical Review A 72(3), 2005, p. 033610.
  • [30] OBRECHT J.M., WILD R.J., ANTEZZA M., PITAEVSKII L.P., STRINGARI S., CORNELL E.A., Measurement of the temperature dependence of the Casimir–Polder force, Physical Review Letters 98(6), 2007, p. 063201.
  • [31] BENDER H., COURTEILLE P.W., MARZOK C., ZIMMERMANN C., SLAMA S., Direct measurement of intermediate-range Casimir–Polder potentials, arXiv:0910.3837v1, 2009.
  • [32] BENDER H., COURTEILLE P.W., ZIMMERMANN C., SLAMA S., Towards surface quantum optics with Bose–Einstein condensates in evanescent waves, Applied Physics B 96(2–3), 2009, pp. 275–279.
  • [33] SEGEV B., CÔTÉ R., RAIZEN M.G., Quantum reflection from an atomic mirror, Physical Review A 56(5), 1997, pp. R3350–R3353.
  • [34] CÔTÉ R., SEGEV B., RAIZEN M.G., Retardation effects on quantum reflection from an evanescent--wave atomic mirror, Physical Review A 58(5), 1998, pp. 3999–4013.
  • [35] CÔTÉ R., SEGEV B., Quantum reflection engineering: The bichromatic evanescent-wave mirror,Physical Review A 67(4), 2003, p. 041604(R).
  • [36] KALLUSH S., SEGEV B., CÔTÉ R., Manipulating atoms and molecules with evanescent-wave mirrors, The European Physical Journal D 35(1), 2005, pp. 3–14.
  • [37] IVANOV V.V., CORNELUSSEN R.A., VAN LINDEN VAN DEN HEUVELL H.B., SPREEUW R.J.C., Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface, Journal of Optics B 6(11), 2004, pp. 454–459.
  • [38] AMINOFF C.G., STEANE A.M., BOUYER P., DESBIOLLES P., DALIBARD J., COHEN-TANNOUDJI C., Cesium atoms bouncing in a stable gravitational cavity, Physical Review Letters 71(19), 1993,pp. 3083–3086.
  • [39] OVCHINNIKOV YU.B., SÖDING J., GRIMM R., Cooling atoms in dark gravitational laser traps,JETP Letters 61(1), 1995, pp. 21–26.
  • [40] OVCHINNIKOV YU.B., LARYUSHIN D.V., BALYKIN V.I., LETOKHOV V.S., Cooling of atoms on reflection from a surface light wave, JETP Letters 62(2), 1995, pp. 113–118.
  • [41] DESBIOLLES P., ARNDT M., SZRIFTGISER P., DALIBARD J., Elementary Sisyphus process close to a dielectric surface, Physical Review A 54(5), 1996, pp. 4292–4298.
  • [42] LARYUSHIN D.V., OVCHINNIKOV YU.B., BALYKIN V.I., LETOKHOV V.S., Reflection cooling of sodium atoms in an evanescent light wave, Optics Communications 135(1–3), 1997, pp. 138–148.
  • [43] OVCHINNIKOV YU.B., MANEK I., GRIMM R., Surface Trap for Cs atoms based on evanescent-wave cooling, Physical Review Letters 79(12), 1997, pp. 2225–2228.
  • [44] MANEK I., OVCHINNIKOV YU.B., GRIMM R., Generation of a hollow laser beam for atom trapping using an axicon, Optics Communications 147(1–3), 1998, pp. 67–70.
  • [45] HAMMES M., RYCHTARIK D., NÄGERL H.-C., GRIMM R., Cold-atom gas at very high densities in an optical surface microtrap, Physical Review A 66(5), 2002, p. 051401(R).
  • [46] RYCHTARIK D., ENGESER B., NÄGERL H.-C., GRIMM R., Two-dimensional Bose–Einstein condensate in an optical surface trap, Physical Review Letters 92(17), 2004, p. 173003.
  • [47] HAMMES M., RYCHTARIK D., ENGESER B., NÄGERL H.-C., GRIMM R., Evanescent-wave trapping and evaporative cooling of an atomic gas at the crossover to two dimensions, Physical Review Letters 90(17), 2003, p. 173001.
  • [48] GILLEN J.I., BAKR W.S., PENG A., UNTERWADITZER P., FÖLLING S., GREINER M., Two-dimensional quantum gas in a hybrid surface trap, Physical Review A 80(2), 2009, p. 021602(R).
  • [49] ALLOSCHERY O., MATHEVET R., WEINER J., LEZEC H.J., All-optical atom surface traps implemented with one-dimensional planar diffractive microstructures, Optic Express 14(26), 2006, pp. 12568–12575.546 D. BARTOSZEK et al.
  • [50] OL’SHANII M.A., OVCHINNIKOV YU.B., LETOKHOV V.S., Laser guiding of atoms in a hollow optical fiber, Optics Communications 98(1–3), 1993, pp. 77–79.
  • [51] MARKSTEINER S., SAVAGE C.M., ZOLLER P., ROLSTON S.L., Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion, Physical Review A 50(3), 1994, pp. 2680–2690.
  • [52] RENN M.J., DONLEY E.A., CORNELL E.A., WIEMAN C.E., ANDERSON D.Z., Evanescent-wave guiding of atoms in hollow optical fibers, Physical Review A 53(2), 1996, pp. R648–R651.
  • [53] MÜLLER D., CORNELL E.A., ANDERSON D.Z., ABRAHAM E.R.I., Guiding laser-cooled atoms in hollow-core fibers, Physical Review A 61(3), 2000, p. 033411.
  • [54] HARRIS D.J., SAVAGE C.M., Atomic gravitational cavities from hollow optical fibers, Physical Review A 51(5), 1995, pp. 3967–3971.
  • [55] ITO H., NAKATA T., SAKAKI K., OHTSU M., LEE K.I., JHE W., Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers, Physical Review Letters 76(24), 1996, pp. 4500–4503.
  • [56] BALYKIN V.I., HAKUTA K., FAM LE KIEN, LIANG J.Q., MORINAGA M., Atom trapping and guiding with a subwavelength-diameter optical fiber, Physical Review A 70(1), 2004, p. 011401(R).
  • [57] SAGUÉ G., VETSCH E., ALT W., MESCHEDE D., RAUSCHENBEUTEL A., Cold-atom physics using ultrathin optical fibers: Light-induced dipole forces and surface interactions, Physical Review Letters 99(16), 2007, p. 163602.
  • [58] KETTERLE W., DAVIS K.B., JOFFE M.A., MARTIN A., PRITCHARD D.E., High densities of cold atoms in a dark spontaneous-force optical trap, Physical Review Letters 70(15), 1993, pp. 2253–2256.
  • [59] LETT P.D., PHILLIPS W.D., ROLSTON S.L., TANNER C.E., WATTS R.N., WESTBROOK C.I., Optical molasses, Journal of the Otical Society of America B 6(11), 1989, pp. 2084–2107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0014-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.