PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane zagadnienia pracy strumienicowych urządzeń chłodniczych z uwzględnieniem sił grawitacji

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Selected issues of the ejector refrigerator working condition with the consideration of gravitational forces
Języki publikacji
PL
Abstrakty
PL
Chłodziarki strumienicowe o typowych rozwiązaniach konstrukcyjnych, mają liczne zawory oraz pompę na zasilaniu cieczowym wytwornicy pary. Alternatywą tego typu konstrukcji jest chłodziarka grawitacyjna, w której brak jest pomp i zaworów, co pozwala na zwiększenie szczelności instalacji. Cechą charakterystyczną chłodziarki grawitacyjnej jest swobodne przemieszczanie się ciekłego czynnika pomiędzy wymiennikami ciepła. Zmiany poziomów cieczy w wymiennikach wywołują zmiany czynnej powierzchni wymiany ciepła, czynnik wypychany z jednego z wymienników wtłaczany jest do dwóch pozostałych, co tworzy złożoną sieć wzajemnych powiązań. Chłodziarka o takich właściwościach nie została opisana w literaturze naukowej, w pracy podjęto próbę opisu tego typu chłodziarki. Analiza procesów cieplno-przepływowych, zachodzących w chłodziarce grawitacyjnej stanowiła podstawę do opracowania jej modelu matematycznego, a następnie obliczeniowego programu komputerowego. Pomimo że chłodziarka grawitacyjna pozbawiona jest elementów regulacyjnych, wykazano, że ma ona pewne właściwości samoregulacyjne. Na układ samoregulacji wpływa geometria wymienników ciepła, ilość i rodzaj czynnika chłodniczego, charakterystyka robocza strumienicy, temperatura otoczenia wymienników, wartość przyspieszenia grawitacyjnego. Przeprowadzona analiza oddziaływań zewnętrznych pozwoliła na sformułowanie sześciu podstawowych sposobów stymulacji chłodziarki. W celu weryfikacji poprawności obliczeniowej modelu matematycznego zbudowano stanowisko do badań eksperymentalnych i przeprowadzono na nim serię eksperymentów. Dobra zgodność wyników pochodzących z badań eksperymentalnych i z modelu obliczeniowego pozwoliła potwierdzić poprawność koncepcji modelu matematycznego. Na podstawie obserwacji poczynionych podczas badań chłodziarki grawitacyjnej sformułowano koncepcję innowacyjnego urządzenia chłodniczego, w którym pole przyspieszeń grawitacyjnych zastąpiono polem przyspieszeń odśrodkowych powstającym podczas ruchu obrotowego całości chłodziarki. Urządzenie, dla którego zaproponowano nazwę chłodziarka wirograwitacyjna, ma osiowosymetryczną budowę z centralnie umiejscowioną strumienicą otoczoną pierścieniowymi wymiennikami ciepła. Opracowany model matematyczny chłodziarki wirograwitacyjnej pozwolił określić dodatkowy typ stymulacji realizowany za pomocą prędkości obrotowej. Skonstruowano dwie prototypowe chłodziarki wirograwitacyjne i przeprowadzono z nimi liczne próby. Podczas badań obserwowano niestabilną pracę chłodziarki, sformułowano i uzasadniono prawdopodobne przyczyny obserwowanych stanów i sugestie, co do prowadzenia dalszych prac badawczych.
EN
The typical pump version of an ejector refrigerator consists of many valves and a liquid refrigerant pump. The pump is the only element containing movable parts, which may cause a leak in the installation. The alternative to a pump ejector refrigerator is a gravitational one. Its distinctive characteristic is non-limited flow of liquid refrigerant between the heat exchangers. The liquid refrigerant level change makes the change of the heat transfer area, the refrigerant pushed out from one of the heat exchangers is forced into the other two exchangers. That kind of the refrigerator has not been described yet. The analysis of thermal and flow processes was used to prepare its mathematical model and computer calculating program. Although the refrigerator has no control devices it reveals some self-regulation properties. The self-regulation abilities result from the heat exchangers geometry, the kind of the refiger-ant used, liquid refrigerant volume charged, external temperatures, gravitational acceleration value and the properties of the ejector used. Six kinds of gravitational ejector refrigerator stimulation were defined. In order to validate the model, the experimental set-up with water as a refrigerant was prepared and some experiments were done. The comparison of the experimental and calculating results confirmed the correctness of the model of the refrigerant equilibrium in a gravitational ejector refrigerator. The conception of the gravitational refrigerator was transposed to an innovative conception of a rotating refrigerator. Despite the gravity ational acceleration, the acceleration of rotary motion may be significant and small dimensions of refrigerator can be obtained. A specific refrigerator arrangement is demanded: fixing the ejector in the axis of rotation and the concentric heat exchangers around. The roto-gravitational name for that kind of refrigerator was proposed. The mathematical model of thermal and flow processes and computer calculating program were prepared. An additional kind of refrigerator stimulation according to the rotational speed value was defined. Two prototypes of roto-gravitational refigerator were prepared and some of experiments were done. An refrigerator work was observed. The probable reasons for this unstability were defined and explained. Suggestions for a future research were made.
Twórcy
autor
  • Instytut Techniki Cieplnej i Mechaniki Płynów Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] Aidoun Z., Ouzzane M., The effect of operating conditions on the performance of a supersonic ejector for refrigeration, International Journal of Refrigeration, 27, 974-984, 2004.
  • [2] Alexis G.K., Performance parameters for the design of a combined refrigeration and electrical power cogeneration system, International Journal of Refrigeration, 30, 1097-1103, 2007.
  • [3] Alexis G.K., Karayiannis E.K., A solar ejector cooling system using refrigerant R134a in the Athens area, Renewable Energy, 30, 1457-1469, 2005.
  • [4] Alexis G.K., Katsanis J.S., Performance characteristics of a methanol ejector refrigeration unit, Energy Conversion and Management, 45, 2729-2744, 2004.
  • [5] Alexis G.K., Rogdakis E.D., A verification study of steam-ejector refrigeration model, Applied Thermal Engineering, 23, 29-36, 2003.
  • [6] Aly N.H., Karameldin A.K., Shamloul M.M., Modelling and symulation of steam jet ejectors, Desalination, 123, 1-8, 1999.
  • [7] Angelino G., Invernizzi C, Thermodynamic optimization of ejector actuated refrigerating cycles,International Journal of Refrigeration, 31, 453-463, 2008.
  • [8] ANSYS CFX wersja 11.0.
  • [9] Aphornratana S., Eames I., A small capacity steam-ejector refrigerator: experimental investigation of a system using ejector with movable primary nozzle, International Journal of Refrigeration, 20, 5, 352-358, 1997.
  • [10] Arbel A., Sokolov M., Revisiting solar-powered ejector air conditioner — the greener the better, Solar Energy, 77, 57-66, 2004.
  • [11] ASHRAE, Steam jet refrigeration equipment, ASHRAE Guide and Data Book, USA, 1969,
  • [12] Balamurugan S., Gaikar V.G., Patwardhan A.W., Effect of ejector configuration on hydrodynamic characteristics of gas-liquid ejectors, Chemical Engineering Science, 63, 721-731, 2008.
  • [13] Bartosiewicz Y., Aidoun Z., Desevaux P., Mercadier Y., Numerical and experimental investigations on supersonic ejectors, International Journal of Heat and Fluid Flow, 26, 56-70, 2005.
  • [14] Bartosiewicz Y., Aidoun Z., Mercadier Y., Numerical assessment of ejector operation for refrigeration applications based on CFD, Applied Thermal Engineering, 26, 604—612, 2006.
  • [15] Boumaraf L., Lallemand A., Modeling of an ejector refrigerating system operating in dimensioning and off-dimensioning conditions with the working fluids R142b and R600a, Applied Thermal Engineering, 29, 265-274, 2009.
  • [16] Butrymowicz D., Zastosowanie strumienie dwufazowych w sprężarkowych urządzeniach chłodniczych - część 1, Chłodnictwo & Klimatyzacja, 12, 16-18, 2001.
  • [17] Butrymowicz D., Zastosowanie strumienie dwufazowych w sprężarkowych urządzeniach chłodniczych - część 2, Chłodnictwo & Klimatyzacja, 1-2, 19-24, 2002.
  • [18] Butrymowicz D., Improvement of compression refrigeration cycle by means of two-phase ejector, XXI Congress of Refrigeration, Paper No. ICR0310, Washington, 2003.
  • [19] Butrymowicz D., Application of two-phase ejector as booster compressor in refrigeration systems. 5th International Conference Compressors 2004, Joint conference of IIR Commissions B2 and B1 with El and E2, Casta Papiernićka, Slovakia, 52-59, 2004.
  • [20] Butrymowicz D., Zagadnienia poprawy efektywności obiegów chłodniczych, Zeszyty Naukowe IMP PAN, 538, 2005.
  • [21] Butrymowicz D., Karwacki J., Miąskowska D., Experimental investigations of flow patterns in two-phase liquid-vapour ejector, refrigerant (in Polish), Konferencja XXXVIII Dni Chłodnictwa, Poznań, 2006.
  • [22] Butrymowicz D., Karwacki J., Miąskowska D., Trela M., Performance of two-phase ejector of various geometries, Proceedings ICR07-B1-1269, The 22nd ICR, Beijing, China, 2007.
  • [23] Butrymowicz D., Miąskowska D., Karwacki J., Experimental investigations of free liquid jet of refrigerant, Konferencja XXXVIII Dni Chłodnictwa, Poznań, 2006.
  • [24] Butrymowicz D., Trela M., Badania wpływu cech geometrycznych strumienie dwufazowych wodno-powietrznych na charakterystyki ich pracy, XVIII Zjazd Termodynamików, Prace Naukowe, Konferencje, Z. 22, Oficyna Wydawnicza Politechniki Warszawskiej, I, 185-192, 2002.
  • [25] Butrymowicz D., Trela M., Badania charakterystyk pracy strumienicy dwufazowej, Inżynieria i Aparatura Chemiczna, 2, 6-13, 2002.
  • [26] Chaiwongsa P., Wongwises S., Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device, International Journal of Refrigeration, 30, 601-608, 2007.
  • [27] Chaiwongsa P., Wongwises S., Experimental study on R-134a refrigeration system using a two-phase ejector as an expansion device, Applied Thermal Engineering, 28, 461-411, 2008.
  • [28] Chang Y.J., Chen Y.M., Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle, Experimental Thermal and Fluid Science, 22, 203-211, 2000.
  • [29] Chen Y.M., Sun C.Y., Experimental study of the performance characteristics of a steam-ejector refigeration system, Experimental Thermal and Fluid Science, 15, 384-394, 1997.
  • [30] Chou S.K., Yang P.R., Yap C, Maximum mass flow ratio due to secondary flow choking in an ejector refrigeration, International Journal of Refrigeration, 24, 486-499, 2001.
  • [31] Chuech S.G., Chen CC, Lu J.C., Yan M.M., Design and implementation of ejector driven micropump, Conversion and Management, 48, 2657-2662, 2007.
  • [32] Chunnanond K., Aphornratana S., An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector, Applied Thermal Engineering, 24, 311-322, 2004.
  • [33] Chunnanond K., Aphornratana S., Ejectors: applications in refrigeration technology, Renewable and Sustainable Energy Review, 8, 129-155, 2004.
  • [34] Defrate L.A., Hoerl A.E., Optimum design of ejector using digital computers, Chem. Engrg. Progress Sympos.,55,21,43-51, 1959.
  • [35] Deng J.Q., Jiang P.X., Lu T., Lu W., Particular characteristics of transcritical C02 refrigeration cycle with an ejector, Applied Thermal Engineering, 27, 381-388, 2007.
  • [36] Desevaux P., A method for visualizing the mixing zone between two co-axial flows in an ejector, Optics and Lasers in Engineering, 35, 317-323, 2001.
  • [37] Domański P.A., Theoretical evaluation of the vapor compression cycle with a liquid-line/suction-line heat exchanger, economizer, and ejector, Nistir-5606, National Institute of Standards and Technology, 03, 1995.
  • [38] Dorantes R., Estrada C.A., Pilatowsky I., Mathematical simulation of a solar ejector-compression refrigeration system, Applied Thermal Engineering, 16, 8/9, 669-675, 1996.
  • [39] Drescher M., Hafner A., Jakobsen A., Neksa P., Zha S., Experimental investigation of ejector for R744 transcritical systems, Proceedings ICR07-B1-742, The 22nd ICR, Beijing, China, 2007.
  • [40] Eames I.W., Aphornratana S., Haider W., A theoretical and experimental study of a small-scale steam jest refrigerator, International Journal of Refrigeration, 18, 6, 378-386, 1995.
  • [41] Elbel S., Hrnjak P., Experimental investigation of transcritical C02 ejector system performance, Proceedings ICE07-E1-72, The 22nd ICR, Beijing, China, 2007.
  • [42] Elbel S, Hrnjak P., Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation, International Journal of Refrigeration, 31,411-422, 2008.
  • [43] El-Dessouky H., Ettouney H., Alatiqi I., Al-Nuwaibit G., Evaluation of steam jet ejectors, Chemical Engineering and Processing, 41, 551-561, 2002.
  • [44] Ersoy H. K., Yalcin S., Yapici R., Ozgoren M., Performance of a solar ejector cooling-system in the southern region of Turkey, Applied Energy, 84, 971-983, 2007.
  • [45] Grazzini G., Mariani A., A simple program to design a multi-stage jet-pump for refrigeration cycles, Energy Conversion & Management, 39, 16-18, 1827-1834, 1998.
  • [46] Grazzini G., Rocchetti A., Influence of the objective function on the optimisation of a steam ejector cycle, International Journal of Refrigeration, 31, 510-515, 2008.
  • [47] Guo J, Shen H.G., Modeling solar-driven ejector refrigeration system offering air conditioning for office buildings, Energy and Buildings, 41, 175-181, 2009.
  • [48] Havelka P., Linek V., Sinkule J., Zahradnik J., Fialova M., Effect of the ejector configuration on the gas suction rate and gas hold-up in ejector loop reactors, Chemical Engineering Science, 52, 11, 1701-1713, 1997.
  • [49] Hong W.J., Alhussan K., Zhang H., Garris C.A., A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency, Energy, 29, 2331-2345,2004.
  • [50] Huang B. J., Chang J.M., Empirical correlation for ejector design, International Journal of Refrigeration, 22, 379-388, 1999.
  • [51] Huang B.J., Chang J.M., Wang CP., Petrenko V.A., A 1-D analysis of ejector performance, International Journal of Refrigeration, 22, 354-364, 1999.
  • [52] Huang B.J., Hu S.S., Lee S.H., Development of an ejector cooling system with thermal pumping effect, International Journal of Refrigeration, 29, 476-84, 2006.
  • [53] Huang B. J., Petrenko V. A., Samofatov I. Y., Shchetinin N. A., Collector selection for solar ejector cooling system, Solar Energy, 71,4, 269-274, 2001.
  • [54] Kasperski J., Mathematical model of thermal and mass equilibrium in an installation of a gravitational ejector refrigerator, Chemical and Process Engineering, 29, 4, 997-1011, 2008.
  • [55] Kasperski J., Samoregulacyjna własność wymienników ciepła oraz stany przejściowe w grawitacyjnych obiegach strumienicowych, Chłodnictwo, 43, 3, 8-12, 2008.
  • [56] Kasperski J., Lewkowicz M., Piętrowicz S., Kompaktowy klimatyzator dachowy napędzany energią słoneczną - optymalizacja kąta obrotu kolektorów ukośnie nadążnych, Ciepłownictwo, Ogrzewnictwo, Wentylacja, 38, 9, 22-25, 2007.
  • [57] Kasperski J., Dobór czynników chłodniczych dla grawitacyjnych obiegów strumienicowych małej mocy, Chłodnictwo, 42, 6, 12-16, 2007.
  • [58] Kasperski J., Rotational type of a gravitational ejector refrigerator - a system balance of the refrigerant analysis, International Journal of Refrigeration, 33, 1, 3-11, 2010.
  • [59] Kasperski J., Two kinds of gravitational ejector refrigerator stimulation, Applied Thermal Engineering, 29, 3380-3385, 2009.
  • [60] Kasperski J., Zgłoszenie patentowe RP nr PL382807, 2007.
  • [61] Kasperski J., Zgłoszenie patentowe RP nr PL385657, 2008.
  • [62] Kasperski J., Danielska M., Sezonowa praca systemów klimatyzacji i ogrzewania zasilanych energią słoneczną akumulowanąw złożu ceramicznym. Chłodnictwo & Klimatyzacja, 13,4,100-106, 2008.
  • [63] Kasperski J., Piętrowicz S., Chłodnicza, dwufazowa strumienica naddźwiękowa. Porównanie wyników modelowania numerycznego z danymi eksperymentalnymi, Chłodnictwo & Klimatyzacja, 12, 5, 26-31,2007.
  • [64] Kasperski J., Pietrowicz S., Isentropic efficiency of a high-rotation speed refrigerating ejector, Chemical and Process Engineering, 29, 2, 505- 516, 2008.
  • [65] Kasperski J., Pietrowicz S., Modelling of energetic optimal working point of an ejector air conditioner combined with a flat solar collector, Archives of Thermodynamics, 27, 4, 111-122, 2006.
  • [66] Kasperski J., Pietrowicz S., Operating characterstic of steam ejector based on the Hartley's experimental scheme determined by numerical modelling of flow, 7th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Proceedings, Kraków, Poland, 2009.
  • [67] Kasperski J., Pietrowicz S., Słoneczny, kompaktowy klimatyzator strumienicowy. Numeryczne modelowanie współpracy z kolektorami płaskimi i skupiającymi, Chłodnictwo & Klimatyzacja, 12, 1/2,56-62,2007.
  • [68] Kasperski J., Pietrowicz S., Zgłoszenie patentowe RP nr PL382808, 2007.
  • [69] Keenan J.H., Neumann E.P., A simple air ejector, ASME Applied Mechanics, A75-A81, 1942.
  • [70] Keenan J.H., Neumann E.P., Lustwerk F., An investigation of ejector design by analysis and experiment, ASME Applied Mechanics, 299-309, 1950.
  • [71] Kim D., Lee J.H., Setoguchi T., Matsuo S., Computational analysis of a variable ejector flow, Journal of Thermal Science, 15, 2, 140-144, 2006.
  • [72] Kima M.I., Kima O.S., Leea D.H., Kim S.D., Numerical and experimental investigations of gas-liquid dispersion in an ejector, Chemical Engineering Science, 62, 7133-7139, 2007.
  • [73] Korres C.J., Papaioannou A.T., Lygerou V., Koumoutsos N.G., Solar cooling by thermal compression — the dependence of the jet thermal compressor efficiency on the compression ratio, Energy, 27, 795-805, 2002.
  • [74] Kremar J., Peddieson J., Han S., Comparison of predictions based on three control volume models of subsonic/supersonic ejector systems, Acta Mechanica, 193, 85-99, 2007.
  • [75] Ksayer E.B., Clodic D., C02 ejector refrigeration cycle design, tests and results, Proceedings ICR07-B1-1590, The 22nd ICR, Beijing, China, 2007.
  • [76] Li D., Groll E.A., Transcritical C02 refrigeration cycle with ejector-expansion device, International Journal of Refrigeration, 28, 766-773, 2005.
  • [77] Ling Z., A study on the new separate heat pipe refrigerator and heat pump, Applied Thermal Engineering, 24, 2737-2745, 2004.
  • [78] Man-0 T., Tanino M., Okazaki T., Koyama S., The enhanced heat transfer in the plate-type evaporator by using an ejector for recirculation, Proceedings ICR07-B2-931, The 22nd ICR, Beijing, China, 2007.
  • [79] Matsuo K., Miyazato Y., Kim H.D., Shock train and pseudo-shock phenomena in internal gas flows, Progress In Aerospace Sciences, 35, 33-100, 1999.
  • [80] Meyer A.J. Harms T.M., Dobson R.T., Steam jet ejector cooling powered by waste or solar heat, Renewable Energy, 34, 297-306, 2009.
  • [81] Munday J.T., Bagster D.F., A new theory applied to steam jet refrigeration, Industrial Engrg. Chem. Process Des. Dev., 16, 4, 442-449, 1977.
  • [82] Nguyen V.M., Riffat S.B., Doherty P.S., Development of a solar-powered passive ejector cooling system, Applied Thermal Engineering, 21, 157-168, 2001.
  • [83] Ouzzane M., Aidoun Z., Model development and numerical procedure for detailed ejector analysis and design, Applied Thermal Engineering, 23, 2337-2351, 2003.
  • [84] Paliwoda A., Experimental study on low-grade heat and solar energy operated halocarbon vapour jet refrigeration system, Tropical studies, IIR Bull, 1968.
  • [85] Paliwoda A., Urządzenia chłodnicze strumienicowe, WNT, Warszawa, 1971.
  • [86] Pang Z., Ma G., Yu L., Experimental study on quasi two-stage compression heat pump system coupled with ejector, Proceedings ICR07-E2-542, The 22nd ICR, Beijing, China, 2007.
  • [87] Pianthong K., Seehanam W., Behnia M., Sriveerakul T., Aphornratana S., Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique, Energy Conversion and Management, 48, 2556-2564, 2007.
  • [88] Pietrowicz S., Kasperski J., Numeryczne modelowanie procesów cieplno-przepływowych podczas przepływu dwufazowego płynu w strumienicy naddźwiękowej, Systems, 11, 1/2, 500-508, 2006.
  • [89] Pietrowicz S., Kasperski J., The numerical modeling of thermo - flow processes in high — speed rotation ejector used in refrigerating system, Proceedings ICR07-B1-1076, The 22nd ICR, Beijing, China, 2007.
  • [90] Pietrowicz S., Kasperski J., The thermo-flow processes proceeding during the two - phase flow in supersonic ejector applied in low power solar air conditioning systems, Proceedings ICR07-E1-1073, The 22nd ICR, Beijing, China, 2007.
  • [91] Pollerberg C, Hamza A., Ali H., Dotsch C, Experimental study on the performance of a solar driven steam jet ejector chiller, Energy Conversion and Management, 49, 3318-3325, 2008.
  • [92] Pridasawas W., Lundqvist P., A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant, International Journal of Refrigeration, 30, 840-850, 2007.
  • [93] Pridasawas W., Lundqvist P., An exergy analysis of a solar-driven ejector refrigeration system, Solar Energy, 76, 369-379, 2004.
  • [94] Riffat S.B., Gan G., Smith S., Computational fluid dynamics applied to ejector heat pumps, Applied Thermal Engineering, 16, 4, 291-297, 1996.
  • [95] Riffat S.B., Holt A., A novel heat pipe/ejector cooler, Applied Thermal Engineering, 18, 93-101, 1998.
  • [96] Riffat S. B., Warren P., Webb A., Rotary heat pump driven by natural gas, Heat Recovery Systems &CHP, 15, 6, 545-554, 1995.
  • [97] Rogdakis E.D., Alexis G.K., Investigation of ejector design at optimum operating condition, Energy Conversion & Management, 41, 1841-1849, 2000.
  • [98] Rusly E., Aye L., Charters W.W.S., Ooi A., CFD analysis of ejector in a combined ejector cooling system, International Journal of Refrigeration, 28, 1092-1101, 2005.
  • [99] Sankarlal T., Mani A., Experimental investigations on ejector refrigeration system with ammonia, Renewable Energy, 32, 1403-1413, 2007.
  • [100] Sankarlal T., Mani A., Experimental studies on an ammonia ejector refrigeration system, International Communications in Heat and Mass Transfer, 33, 224-230, 2006.
  • [101] Sarkar J., Optimization of ejector-expansion transcritical C02 heat pump cycle, Energy, 33, 1399-1406, 2008.
  • [102] Shapiro A.H., The dynamics and thermodynamics of compressible fluid flow, John Wiley & sons, New York, 1953.
  • [103] Shen S., Qu X., Zhang B., Riffat S., Gillott M., Study of a gas-liquid ejector and its application to a solar-powered bi-ejector refrigeration system, Applied Thermal Engineering, 25, 2891-2902, 2005.
  • [104] Selvaraju A., Mani A., Analysis of a vapour ejector refrigeration system with environment friendly refrigerants, International Journal of Thermal Sciences 43, 915-921, 2004.
  • [105] Selvaraju A., Mani A., Analysis of an ejector with environment friendly refrigerants, Applied Thermal Engineering 24, 827-838, 2004.
  • [106] Selvaraju A., Mani A., Experimental investigation on R134a vapour ejector refrigeration system, International Journal of Refrigeration, 29, 1160-1166, 2006.
  • [107] Smirnov H.F., Kosoy B.V., Refrigerating heat pipes, Applied Thermal Engineering, 21, 631-641, 2001.
  • [108] Srisastra P., Aphornratana S., A circulating system for a steam jet refrigeration system, Applied Thermal Engineering, 25, 2247-2257, 2005.
  • [109] Srisastra P., Aphornratana S., Sriveerakul T., Development of a circulating system for a jet refrigeration cycle, International Journal of Refrigeration 31, 921-929, 2008.
  • [110] Sriveerakul T., Aphornratana S., Chunnanond K., Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results, International Journal of Thermal Sciences, 46, 812-822, 2007.
  • [111] Sriveerakul T., Aphornratana S., Chunnanond K., Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries, International Journal of Thermal Sciences, 46, 823-833, 2007.
  • [112] Stoecker W.F., Steam-jet refrigeration, Boston, McGraw-Hill, 1958.
  • [113] Sun D.W., Solar powered combined ejector-vapour compression cycle for air-conditioning and refrigeration, Energy Conversion and Management, 38, 5, 479-491, 1997.
  • [114] Sun D.W., Variable geometry ejectors and their applications in ejector refrigeration systems, Energy, 21, 10, 919-929, 1996.
  • [115] Vidal H., Colle S., Pereira G., Modelling and hourly simulation of a solar ejector cooling system, Applied Thermal Engineering, 26, 663-672, 2006.
  • [116] Wagner W., Kruse A., The Industrial Standard IAPWS-IF97: Properties of Water and Steam, Springer, Berlin, 1998.
  • [117] Wang J., Tao L., Wang Y., Guo J., CFD analysis of ejector in an ejector cooling system, Proceedings ICR07-B1-1366, The 22nd ICR, Beijing, China, 2007.
  • [118] Wongwises S., Disawas S., Performance of the two-phase ejector expansion refrigeration cycle, International Journal of Heat and Mass Transfer, 48, 4282-4286, 2005.
  • [119] Wu S., Eames I.W., A novel absorption-recompression refrigeration cycle, Applied Thermal Engineering, 18, 1149-1157, 1998.
  • [120] Yadav R.L., Patwardhan A.W., Design aspects of ejectors: Effects of suction chamber geometry, Chemical Engineering Science, 63, 3886-3897, 2008.
  • [121] Yapici R., Experimental investigation of performance of vapor ejector refrigeration system using refrigerant Rl23, Energy Conversion and Management, 49, 953-961, 2008.
  • [122] Yapici R., Ersoy H.K., Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model, Energy Conversion and Management, 46, 3117-3135, 2005.
  • [123] Yapici R., Ersoy H.K., Aktoprakoglu A., Halkaci H.S., Yigit O., Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio, International Journal of Refrigeration, 31, 1183-1189, 2008.
  • [124] Yu J., Chen H., Ren Y., Li Y., A new ejector refrigeration system with an additional jet pump, Applied Thermal Engineering, 26, 312-319, 2006.
  • [125] Yu J., Ren Y., Chen H., Li Y., Applying mechanical subcooling to ejector refrigeration cycle for improving the coefficient of performance, Energy Conversion and Management, 48, 1193-1199, 2007.
  • [126] Yu J., Chen H., Ren Y., Li Y., A new ejector refrigeration system with an additional jet pump, Applied Thermal Engineering, 26, 312-319, 2006.
  • [127] Yu J., Zhao H., Li Y., Application of an ejector in autocascade refrigeration cycle for the performance improvement, International Journal of Refrigeration, 31, 279-286, 2008.
  • [128] Yu J., Zhao H., Pu H.H., Jiaotong X., Ejector refrigeration cycle with jet pump as expansion device, Proceedings ICR07-B2-239, The 22nd ICR, Beijing, China, 2007.
  • [129] Zha S., Jakobsen A., Hafner A., Neksa P., Design and parametric investigation on ejector for R744 transcritical system, Proceedings ICR07-B1-743, The 22nd ICR, Beijing, China, 2007.
  • [130] Zhang H., Garris C.A., Crypto-steady supersonic pressure exchange: A simple analytical model, Applied Energy, 85, 228-242, 2008.
  • [131] Zhang B., Shen S., A theoretical study on a novel bi-ejector refrigeration cycle, Applied Thermal Engineering, 26, 622-626, 2006.
  • [132] Zhu Y., Cai W., Wen C, Li Y., Shock circle model for ejector performance evaluation, Energy Conversion and Management, 48, 2533-2541, 2007.
  • [133] Zhu Y., Cai W., Wen C, Li Y., Simplified ejector model for control and optimization, Energy Conversion and Management, 49, 1424-1432, 2008.
  • [134] Zhu Y., Li Y., A theoretical study of a novel regenerative ejector refrigeration cycle, International Journal of Refrigeration, 30, 464-410, 2007.
  • [135] Zhu Y., Li Y., Novel ejector model for performance evaluation on both dry and wet vapors ejectors, International Journal of Refrigeration, 32, 21-31, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0173
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.