PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Extraordinary optical transmission by interference of diffracted wavelets

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The phenomenon of extraordinary optical transmission is drawing much attention of researchers because of its potential applications in diverse emerging areas. In the present work, experimental observations on diffraction-Lloyd-mirror interferometer are reported, where two diffracted wavefronts are superimposed using Lloyd’s mirror. These observations provide direct experimental evidence in support of the idea that one of the main reasons of enhanced transmission through subwavelength apertures is the coherent superposition of diffracted wavelets originating from diffractive scattering at the apertures.
Czasopismo
Rocznik
Strony
491--499
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Central Scientific Instruments Organisation, Chandigarh-160030, India
Bibliografia
  • [1] EBBESEN T.W., LEZEC H.J., GHAEMI H.F., THIO T., WOLFF P.A., Extraordinary optical transmission through sub-wavelength hole arrays, Nature 391, 1998, pp. 667–669.
  • [2] BARNES W.L., DEREUX A., EBBESEN T.W., Surface plasmon subwavelength optics, Nature 424, 2003, pp. 824–830.
  • [3] ENGHETA N., Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials, Science 317(5845), 2007, pp. 1698–1702.
  • [4] GENET C., EBBESEN T.W., Light in tiny holes, Nature 445, 2007, pp. 39–46.
  • [5] GARCÍA DE ABAJO F.J., Light scattering by particle and hole arrays, Reviews of Modern Physics 79(4), 2007, pp. 1267–1290.
  • [6] POPOV E., NEVIÈRE M., ENOCH S., REINISCH R., Theory of light transmission through subwavelength periodic hole arrays, Physical Review B 62(23), 2000, pp. 16100–16108.
  • [7] GARCÍA-VIDAL F.J., LEZEC H.J., EBBESEN T.W., MARTÍN-MORENO L., Multiple paths to enhance optical transmission through a single subwavelength slit, Physical Review Letters 90(21), 2003, p. 213901.
  • [8] LIU H., LALANNE P., Microscopic theory of the extraordinary optical transmission, Nature 452, 2008, pp. 728–731.
  • [9] PACIFICI D., LEZEC H.J., ATWATER H.A., WEINER J., Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits, Physical Review B 77(11), 2008, p. 115411.
  • [10] PACIFICI D., LEZEC H.J., SWEATLOCK L.A., WALTERS R.J., ATWATER H.A., Universal optical transmission features in periodic and quasiperiodic hole arrays, Optics Express 16(12), 2008, pp. 9222–9238.
  • [11] PORTO J.A., GARCÍA-VIDAL F.J., PENDRY J.B., Transmission resonances on metallic gratings with very narrow slits, Physical Review Letters 83(14), 1999, pp. 2845–2848.
  • [12] LU Y., CHO M.H., LEE Y.P., RHEE J.Y., Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits, Applied Physics Letters 93(6), 2008, p. 061102.
  • [13] THIO T., GHAEMI H.F., LEZEC H.J., WOLFF P.A., EBBESEN T.W., Surface-plasmon-enhanced transmission through hole arrays in Cr films, Journal of the Optical Society of America B 16(10), 1999, pp. 1743–1748.
  • [14] SARRAZIN M., VIGNERON J.-P., Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes, Physical Review E 68(1), 2003, p. 016603.
  • [15] LEZEC H.J., THIO T., Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays, Optics Express 12(16), 2004, pp. 3629–3651.
  • [16] KUKHLEVSKY S.V., Enhanced transmission of light through subwavelength nanoapertures by far-field multiple-beam interference, Physical Review A 78(2), 2008, p. 023826. Extraordinary optical transmission ... 499
  • [17] KUKHLEVSKY S.V., Interference-induced enhancement of intensity and energy of a quantum optical field by a subwavelength array of coherent light sources, Applied Physics B 93(1), 2008, pp. 145–150.
  • [18] KUMAR R., KAURA S.K., CHHACHHIA D.P., AGGARWAL A.K., Direct visualization of Young’s boundary diffraction wave, Optics Communications 276(1), 2007, pp. 54–57.
  • [19] KUMAR R., Structure of boundary diffraction wave revisited, Applied Physics B 90(3–4), 2008, pp. 379–382.
  • [20] RUBINOWICZ A., Thomas Young and the theory of diffraction, Nature 180, 1957, pp. 160–162.
  • [21] BORN M., WOLF E., Principles of Optics, 6th Edition, Pergamon Press, Oxford, 1993, pp. 449–453.
  • [22] KUMAR R., KAURA S.K., CHHACHHIA D.P., MOHAN D., AGGARWAL A.K., Comparative study of different schlieren diffracting elements, Pramana – Journal of Physics 70(1), 2008, pp. 121–129.
  • [23] KUMAR R., CHHACHHIA D.P., AGGARWAL A.K., Folding mirror schlieren diffraction interferometer, Applied Optics 45(26), 2006, pp. 6708–6711.
  • [24] KUMAR R., Interference and diffraction effects in folding mirror schlieren diffraction interferometer, Applied Physics B 93(2–3), 2008, pp. 415–420.
  • [25] KELLER J.B., Diffraction by an aperture, Journal of Applied Physics 28(4), 1957, pp. 426–444.
  • [26] MARQUÈS R., MESA F., JELINEK L., MEDINA F., Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes, Optics Express 17(7), 2009, pp. 5571–5579.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0169
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.