PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biocompatible glass composite system – some physical- mechanical properties of the glass composite matrix system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work there are discussed the physical-mechanical properties of the glass CaO–SiO2–P2O5–Na2O system (FB3) assigned for the glass composite matrix system using the following research methods: spectral chemical analysis (XRF), SBET specific surface area analysis, XRD investigation, observation with a scanning electron microscope (SEM), wettability of the submicrocrystalline sintered corundum (ssc) by the glass system, microhardness test and DTA measurement. It was found that theoretical oxide chemical composition was close to that obtained from the spectral chemical analysis (XRF), the prolongated high energetic milling of the glass system did not have any significant influence on the specific surface area of grains (from 0.9159 m2/g after 5-hour milling to 1.9241 m2/g after 20-hour milling process only), in comparison to the specific surface area of the ssc, wettability investigation of the submicrocrystalline sintered corundum by the glass FB3 system showed the value of contact angle (? < 45°), and the microhardness value of about 6 GPa. On the basis of DTA results the sintering temperature of bioglass composite with the strengthening phase from the submicrocrystalline sintered corundum was determined and, using the previous experience, the way of producing composite was proposed. The calculation of the thermodynamic stability of the glass system-strengthening phase by VCS algorithm showed the presence of 4–5 solid compounds. The results of the fibroblast (cell line CCL 110, Promochem LG) preliminary culture investigation on the bioglass composite substrate were positive. The best results were obtained in the case of the biocomposite with the smallest amount of strengthening phase.
Czasopismo
Rocznik
Strony
403--412
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
autor
autor
  • Institute of Advanced Manufacturing Technology, Wrocławska 37a, 30-011Kraków, Poland
Bibliografia
  • [1] JAEGERMANN Z., ŚLÓSARCZYK A., Gęsta i porowata bioceramika korundowa w zastosowaniach medycznych, Uczelniane Wydawnictwo Naukowo-Dydaktyczne AGH, Kraków, 2007 (in Polish).
  • [2] JAEGERMANN Z., Porowata bioceramika korundowa, PhD Thesis, AGH, Kraków, 2005 (in Polish).
  • [3] BŁAŻEWICZ S., STOCH L., Biomateriały, [In] Biocybernetyka i Inżynieria Biomedyczna, Vol. 4, Akademicka Oficyna Wydawnicza, Exit, Warszawa, 2003 (in Polish).
  • [4] SACHLOS E., CZERNUSZKA J.T., Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds, European Cells and Materials, No. 5, 2003, pp. 29–40.
  • [5] HENCH L.L., Biomaterials: a forecast for the future, Biomaterials 19(16), 1998, pp. 1419–1423.
  • [6] ŚLÓSARCZYK A., RAPACZ-KMITA A., Bioaktywne ceramiczne materiały kompozytowe, Materiały Ceramiczne 56(4), 2004, pp. 144–149 (in Polish).
  • [7] CHEN Q.Z., EFTHYMIOU A., SALIH V., BOCCACINI A.R., Bioglass-derived glass-ceramic scaffolds: Study of cell proliferation and scaffold degradation in vitro, Journal of Biomedical Materials Research Part A 84(4), 2008, pp. 1049–1060.
  • [8] KRAJEWSKI A., RAVAGLIOLI A., Bioceramics and biological glasses, [In] Integrated Biomaterials Science, Springer US, 2002.
  • [9] NIŻANKOWSKI CZ., Manufacturing sintered corundum abradants, Archives of Civil and Mechanical Engineering 2(2), 2002, pp. 53–64.
  • [10] SZARSKA S., STANIEWICZ-BRUDNIK B., LEKKA M., The effect of the size of the substrate grain made of submicrocrystalline sintered corundum on the bioglass composite structure and certain physico--mechanical properties of the bioglass, Optica Applicata 38(1), 2008, pp. 251–258.
  • [11] PUTTINI S., LEKKA M., DORCHIES O.M., SAUGY D., INCITTI T., RUEGG U.T., BOZZONI I., KULIK A.J., MERMOD N., Gene-mediated restoration of normal myofiber elasticity in dystrophic muscles, Molecular Therapy 17(1), 2009, pp. 19–25.
  • [12] JAEGERMANN Z., MICHAŁOWSKI S., KARAŚ J., CHROŚCICKA A., LEWANDOWSKA-SZUMIEŁ M.,Porowate nośniki korundowe do zastosowania w inżynierii tkankowej, Szkło i Ceramika 57(4), 2006,pp. 16–20 (in Polish).
  • [13] LEKKA M., LEIDLER P., Applicability of AFM in cancer detection, Nature Nanotechnology 4(2), 2009, p. 72.
  • [14] VITALE BROVARONE C., VERNÉ E., APPENDINO P., Macroporous bioactive glasse-ceramic scaffolds for tissue engineering, Journal of Materials Science: Materials in Medicine 17(11), 2006, pp. 1069–1078.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0161
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.