PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hybrid materials doped with lithium ions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sol–gel derived lithium-ion conducting organic–inorganic hybrid materials have been synthesized from tetraethyl orthosilicate (TEOS), propylene glycol, ethylene glycol dimethacrylate, poly(vinyl alcohol), vinyl acetate, ethyl acetoacetate, poly(methyl methacrylate), propylene carbonate and some other precursors and solvents. The mass fraction of the organic additions in the gels and the level of the lithium salt doping (LiClO4) were ~40 mass% and 0.01%, respectively. The morphological and structural properties of the gels were investigated by a scanning electron microscope equipped with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and 29Si MAS Nuclear Magnetic Resonance (29Si MAS NMR). The hybrid gels obtained were amorphous and colourless transparent or slightly opalescent, with the room temperature ionic conductivities of the order of 10–3 Scm–1. The results of FTIR spectroscopy and 29Si MAS NMR investigations have revealed strong influence of the organic modification, resulting in the direct chemical bonding between organic and inorganic components of the gels. The WO3-based electrochromic cells with the hybrids obtained being applied as the electrolytes were able to be reversibly coloured and bleached in the optical transmittance range of ~58% to 5% at around 550 nm.
Czasopismo
Rocznik
Strony
383--396
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Institute of Glass, Ceramics, Refractory and Construction Materials – The Glass Branch in Cracow, ul. Lipowa 3, 30-702 Kraków, Poland
Bibliografia
  • [1] KONO M., HAYASHI E., NISHIURA M., WATANABE M., Chemical and electrochemical characterization of polymer gel electrolytes based on poly(alkylene oxide) macromonomer for application to lithium batteries, Journal of The Electrochemical Society 147(7), 2000, pp. 2517–2524.
  • [2] GLÄSER H.J., Large Area Glass Coating, Von Ardenne Anlagentechnik GMBH, Dresden 2000, pp. 377–393.
  • [3] GRANQVIST C.G., AVENDAÑO E., AZENS A., Electrochromic coatings and devices: survey of some recent advances, Thin Solid Films 442(1–2), 2003, pp. 201–211.
  • [4] PEREIRA A.P.V., VASCONCELOS W.L., ORÉFICE R.L., Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity, Journal of Non-Crystalline Solids 273(1–3), 2000, pp. 180–185.
  • [5] JITIANU A., BRITCHI A., DELEANU C., BADESCU V., ZAHARESCU M., Comparative study of the sol–gel processes starting with different substituted Si-alkoxides, Journal of Non-Crystalline Solids 319(3), 2003, pp. 263–279.
  • [6] ATKINS G.R., KROLIKOWSKA R.M., SAMOC A., Optical properties of an ormosil system comprising methyl- and phenyl- substituted silica, Journal of Non-Crystalline Solids 265(3), 2000, pp. 210–220.
  • [7] CHAKER J.A., DAHMOUCHE K., SANTILLI C.V., PULCINELLI S.H., BRIOIS V., FLANK A.-M., JUDENSTEIN P., Siloxane-polypropyleneoxide hybrid ormolytes: structure-ionic conductivity relationships, Journal of Non-Crystalline Solids 304(1–3), 2002, pp. 109–115.
  • [8] KONO M., HAYASHI E., WATANABE M., Preparation, mechanical properties, and electrochemical characterization of polymer gel electrolytes prepared from poly(alkylene oxide) macromonomers, Journal of The Electrochemical Society 146(5), 1999, pp.1626–1632.
  • [9] NAKAJIMA H., NOMURA S., SUGIMOTOT., NISHIKAWA S., HONMA I., High temperature proton conducting organic/inorganic nanohybrids for polymer electrolyte membrane, Journal of The Electrochemical Society 149(8), 2002, pp. A953–A959.
  • [10] SONG J.Y., WANG Y.Y., WAN C.C., Conductivity study of porous plasticized polymer electrolytes based on poly(vinylidene fluoride) – A comparison with polypropylene separators, Journal of The Electrochemical Society 147(9), 2000, pp. 3219–3225.
  • [11] SAMAR KUMAR MEDDA, DEBTOSH KUNDU, GOUTAM DE, Inorganic–organic hybrid coatings on polycarbonate: Spectroscopic studies on the simultaneous polimerizations of methacrylate and silica networks, Journal of Non-Crystalline Solids 318(1–2), 2003, pp. 149–156.
  • [12] POINSIGNON C., Polymer electrolytes, Materials Science and Engineering: B 3(1–2), 1989, pp. 31–37.
  • [13] DAHMOUCHE K., SANTILLI C.V., DA SILVA M., RIBEIRO C.A., PULCINELLI S.H., CRAIEVICH A.F., Silica-PEG hybrid electrolytes: structure and properties, Journal of Non-Crystalline Solids 247(1–3), 1999, pp. 108–113.
  • [14] DE SOUZA P.H., BIANCHI R.F., DAHMOUCHE K., JUDEINSTEIN P., ROBERTO M. FARIA R.M., BONAGAMBA T.J., Solid-state NMR, ionic conductivity, and thermal studies of lithium--doped siloxane–poly(propylene glycol) organic–inorganic nanocomposites, Chemistry of Materials 13(10), 2001, pp. 3685–3692.
  • [15] YONG-IL PARK, MASAYUKI NAGAI, Proton-conducting properties of inorganic-organic nanocomposites, proton-exchange nanocomposite membranes based on 3-glycidoxypropyltrimethoxysilane and tetraethylorthosilicate, Journal of The Electrochemical Society 148(6), 2001, pp. A616–A623.
  • [16] HUNT A., Statistical and percolation effects on ionic conduction in amorphous systems, Journal of Non-Crystalline Solids 175(1), 1994, pp. 59–70.
  • [17] ŻELAZOWSKA E., ZIEMBA B., LACHMAN W., Counter electrodes for WO3-based electrochromic coatings, Optica Applicata 30(4), 2000, pp. 663–670.
  • [18] BOONSTRA A.H., MEEUWSEN T.P.M., BAKEN J.M.E., ABEN G.V.A., A two-step silica sol–gel process investigated with static and dynamic light-scattering measurements, Journal of Non-Crystalline Solids 109(2–3), 1989, pp. 153–163.
  • [19] DOO-HYUN LEE, JIN-WOONG KIM, KYUNG-DO SUH, Monodisperse micron-sized polymethylmethacrylate particles having a crosslinked network structure, Journal of Materials Science 35(24), 2000, pp. 6181–6188.
  • [20] SHUXUE ZHOU, LIMIN WU, WEIDIAN SHEN, GUANGXIN GU, Study on the morphology and tribological properties of acrylic based polyurethane/fumed silica composite coatings, Journal of Materials Science 39(5), 2004, pp. 1593–1600.
  • [21] PRIMEAU N., VAUTEY C., LANGLET M., The effect of thermal annealing on aerosol-gel deposited SiO2 films: a FTIR deconvolution study, Thin Solid Films 310(1–2), 1997, pp. 47–56.
  • [22] YING J.Y., BENZIGER J.B., NAVROTSKY A., Structural evolution of alkoxide silica gels to glass: effect of catalyst pH, Journal of the American Ceramic Society 76(10), 1993, pp. 2571–2582.
  • [23] GÜNZLER H., GREMLICH H.-U., IR Spectroscopy: An Introduction, Wiley-VCH Verlag GmbH, Weinheim, 2002, pp. 189–246.
  • [24] PARASHAR V.K., RAMAN V., BAHL O.P., Sol–gel preparation of silica gel monoliths, Journal of Non-Crystalline Solids 201(1–2), 1996, pp. 150–152.
  • [25] MUNRO B., Ion-conducting properties of SiO2 gels containing lithium salt, Glass Science and Technology – Glastechnische Berichte 68(4), 1995, pp. 123–132.
  • [26] KYOUNG-HEE LEE, KI-HO KIM, HONG S. LIM, Studies on a new series of cross-linked polymer electrolytes for a lithium secondary battery, Journal of The Electrochemical Society 148(10), 2001, pp. A1148–A1152.
  • [27] EISENBERG A., Physical Properties of Polymers, 2nd Ed., American Chemical Society, Washington DC, 1993, p. 88.
  • [28] DONNADIEU A., Electrochromic materials, Materials Science and Engineering: B 3(1–2), 1989, pp. 185–195.
  • [29] ÖZER N., Electrochemical properties of sol–gel deposited vanadium pentoxide films, Thin Solid Films 305(1–2), 1997, pp. 80–87.
  • [30] COGAN S.F., NGUYEN N.M., PERROTTI S.J., RAUH R.D., Optical properties of electrochromic vanadium pentoxide, Journal of Applied Physics 66(3), 1989, pp. 1333–1337.
  • [31] ASHRIT P.V., BADER G., TRUONG V.V., Electrochromic properties of nanocrystalline tungsten oxide thin films, Thin Solid Films 320(2), 1998, pp. 324–328.
  • [32] COGAN S.F., PLANTE T.D., PARKER M.A., RAUH R.D., Electrochromic solar attenuation in crystalline and amorphous LixWO3, Solar Energy Materials 14(3–5), 1985, pp. 185–193.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0159
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.