PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Saharan aerosol sensed over Warsaw by backscatter depolarization lidar

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The estimates of the optical properties of mineral dust aerosol observed on April 13th and 14th, 2005 during SAWA (Saharan aerosol over Warsaw) experiment are described. Lidar signals at 532 and 1064 nm wavelengths were inverted with a modified Klett-Fernald algorithm. Aerosol optical depth measured with a sun-photometer allowed to reduce uncertainties in the inversion procedure. Further improvement of the estimation came from distinguishing three aerosol layers in the atmosphere on the basis of vertical profiles of optical properties. Having calculated vertical distributions of aerosol extinction coefficients, profiles of local Angstrom exponent were estimated. Independent information on depolarisation of 532 nm lidar returns, together with the assumption about the spheroidal shape and random orientation of aerosol particles, allowed to estimate the aspect ratio and size of particles on the basis of numerical calculations with transition matrix (T-matrix) algorithm by M. Mishchenko. Results indicate the mode radii of spheroids in the range of 0.15-0.3 žm, and their aspect ratio in the range of 0.6-0.8 or 1.3-2.2 (two solutions are allowed). Small size of the particles is explained by dust deposition and mixing with boundary layer aerosol in the Mediterranean region.
Czasopismo
Rocznik
Strony
219--237
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
autor
autor
autor
  • Institute of Geophysics, University of Warsaw, Pasteura 7, 02-093 Warsaw, Poland
Bibliografia
  • [1] SOLOMON S., QIN D., MANNING M., CHEN Z., MARQUIS M., AVERYT K.B., TIGNOR M., MILLER H.L., [Eds.], Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge 2007.
  • [2] SHINE K.P., FORSTER P.M.D.F., The effect of human activity on radiative forcing of climate change: a review of recent developments, Global and Planetary Change 20(4), 1999, pp. 205–225.
  • [3] GOUDIE A.S., MIDDLETON N.J., Saharan dust storms: nature and consequences, Earth-Science Reviews 56(1–4), 2001, pp. 179–204.
  • [4] ENGELSTAEDTER S., TEGEN I., WASHINGTON R., North African dust emissions and transport, Earth-Science Reviews 79(1–2), 2006, pp. 73–100.
  • [5] KALIVITIS N., GERASOPOULOS E., VREKOUSSIS M., KOUVARAKIS G., KUBILAY N., HATZIANASTASSIOU N., VARDAVAS I., MIHALOPOULOS N., Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements, Journal of Geophysical Research 112, 2007, p. D03202.
  • [6] KARASIŃSKI G., KARDAŚ A.E., MARKOWICZ K., MALINOWSKI S.P., STACEWICZ T., STELMASZCZYK K., CHUDZYŃSKI S., SKUBISZAK W., POSYNIAK M., JAGODNICKA A.K., HOCHHERTZ C., WOESTE L., LIDAR investigation of properties of atmospheric aerosol, The European Physical Journal – Special Topics 144(1), 2007, pp. 129–138.
  • [7] GOBBI G.P., BARNABA F., GIORGI R., SANTACASA A., Altitude-resolved properties of a Saharan dust event over the Mediterranean, Atmospheric Environment 34(29–30), 2000, pp. 5119–5127.
  • [8] KUBILAY N., NICKOVIC S., MOULIN C., DULAC F., An illustration of the transport and deposition of mineral dust onto the eastern Mediterranean, Atmospheric Environment 34(8), 2000, pp. 1293–1303.
  • [9] MÜLLER D., MATTIS I., WANDINGER U., ANSMANN A., ALTHAUSEN D., DUBOVIK O., ECKHARDT S., STOHL A., Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer, Journal of Geophysical Research 108, 2003, p. D124345.
  • [10] BORBÉLY-KISS I., KISS A. Z., KOLTAY E., SZABÓ G., BOZÓ L., Saharan dust episodes in Hungarian aerosol: Elemental signatures and transport trajectories, Journal of Aerosol Science 35(10), 2004, pp. 1205–1224.
  • [11] ANSMANN, A., BOSENBERG J., CHAIKOVSKY A., COMERON A., ECKHARDT S., EIXMANN R., FREUDENTHALER V., GINOUIX P., KOMGUEM L., LINNE H., MARQUEZ M.A.L., MATTHIAS V., MATTIS I., MITEV V., MULLER D., MUSIC S., NICKOVIC S., PELON J., SAUVAGE L., SOBOLEWSKY P.,SRIVASTAVA M.K., STOHL A., TORRES O., VAUGHAN G., WANDINGER U., WIEGNER M., Long-range transport of Saharan dust to northern Europe: The 11–16 October 2001 outbreak observed with EARLINET, Journal of Geophysical Research 108, 2003, p. D244783.
  • [12] FRANZEN L.G., HJELMROOS M., KALLBERG P., BRORSTROM-LUNDEN E., JUNTTO S., SAVOLAINEN A.L., The ‘yellow snow’ episode of northern Fennoscandia, March 1991 – A case study of long-distance transport of soil, pollen and stable organic compounds, Atmospheric Environment 28(22), 1994, pp. 3587–3604.
  • [13] PAPAYANNIS A., AMIRIDIS V., MONA L., TSAKNAKIS G., BALIS D., BÖSENBERG J., CHAIKOVSKI A., DE TOMASI F., GRIGOROV I., MATTIS I., MITEV V., MÜLLER D., NICKOVIC S., PEREZ C., PIETRUCZUK A., PISANI G., RAVETTA F., RIZI V., SICARD M., TRICKL T., WIEGNER M., GERDING M., MAMOURI R.E., D’AMICO G., PAPPALARDO G., Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002), Journal of Geophysical Research 113, 2008, p. D10204.
  • [14] GOBBI G.P., BARNABA F., BLUMTHALER M., LABOW G., HERMAN J.R., Observed effects of particles nonsphericity on the retrieval of marine and desert dust aerosol optical depth by lidar, Atmospheric Research 61(1), 2002, pp. 1–14.
  • [15] BALIS D.S., AMIRIDIS V., NICKOVIC S., PAPAYANNIS A., ZEREFOS C., Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece, Geophysical Research Letters 31, 2004, p. L13104.
  • [16] PAPAYANNIS A., BALIS D., AMIRIDIS V., CHOURDAKIS G., TSAKNAKIS G., ZEREFOS C., CASTANHO A.D.A., NICKOVIC S., KAZADZIS S., GRABOWSKI J., Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project, Atmospheric Chemistry and Physics 5(8), 2005, pp. 2065–2079.
  • [17] KISHCHA P., BARNABA F., GOBBI G.P., ALPERT P., SHTIVELMAN A., KRICHAK S.O., JOSEPH J.H., Vertical distribution of Saharan dust over Rome (Italy): Comparison between 3-year model predictions and lidar soundings, Journal of Geophysical Research 110, 2005, p. D06208.
  • [18] LYAMANI H., OLMO F.J., ALADOS-ARBOLEDAS L., Saharan dust outbreak over southeastern Spain as detected by sun photometer, Atmospheric Environment 39(38), 2005, pp. 7276–7284.
  • [19] FOTIADI A., HATZIANASTASSIOU N., DRAKAKIS E., MATSOUKAS C., PAVLAKIS K.G., HATZIDIMITRIOU D., GERASOPOULOS E., MIHALOPOULOS N., VARDAVAS I., Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data, Atmospheric Chemistry and Physics 6(12), 2006, pp. 5399–5413.
  • [20] BALIS D., AMIRIDIS V., KAZADZIS S., PAPAYANNIS A., TSAKNAKIS G., TZORTZAKIS S., KALIVITIS N.,VREKOUSSIS M., KANAKIDOU M., MIHALOPOULOS N., CHOURDAKIS G., NICKOVIC S., PEREZ C.,BALDASANO J., DRAKAKIS M., Optical characteristics of desert dust over the East Mediterranean during summer: a case study, Annales Geophysicae 24(3), 2006, pp. 807–821.
  • [21] GERASOPOULOS E., KOKKALIS P., AMIRIDIS V., LIAKAKOU E., PEREZ C., HAUSTEIN K., ELEFTHERATOS K., ANDREAE M.O., ANDREAE T.W., ZEREFOS C.S., Dust specific extinction cross-sections over the Eastern Mediterranean using the BSC-DREAM model and sun photometer data: the case of urban environments, Annales Geophysicae 27(7), 2009, pp. 2903–2912.
  • [22] MARKOWICZ K.M., KARDAS A.E., Retrieval of aerosol optical properties and estimation of aerosol forcing based on multi-spectral sun-photometer observations, Proceedings of the 12th Conference on Cloud Physics, July 10–14, 2006, Madison, WI.
  • [23] WELTON E.J., VOSS K.J., GORDON H.R., MARING H., SMIRNOV A., HOLBEN B., SCHMIDT B., LIVINGSTON J.M., RUSSEL P.B., DURKEE P.A., FORMENTI P., ANDREAE M.O., Ground-based lidar measurements of aerosols during ACE-2: instrument description, results and comparisons with other ground-based and airborne measurements, Tellus B 52(2), 2000, pp. 636–651.
  • [24] BÖCKMANN C., WANDINGER U., ANSMANN A., BÖSENBERG J., AMIRIDIS V., BOSELLI A., DELAVAL A.,DE TOMASI F., FRIOUD M., GRIGOROV I.V., HAGARD A., HORVAT M., IARLORI M., KOMGUEM L., KREIPL S., LARCHEVEQUE G., MATTHIAS V., PAPAYANNIS A., PAPPALARDO G., ROCADENBOSCH F., RODRIGUES J.A., SCHNEIDER J., SHCHERBAKOV V., WIEGNER M., Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms, Applied Optics 43(4),2004, pp. 977–989.
  • [25] MISHCHENKO M.I., TRAVIS L.D., Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented rotationally symmetric scatterers, Journal of Quantitative Spectroscopy and Radiative Transfer 60(3), 1998, pp. 309–324.
  • [26] KAHNERT M., Reproducing the optical properties of fine desert dust aerosols using ensembles of simple model particles, Journal of Quantitative Spectroscopy and Radiative Transfer 85(3–4), 2004, pp. 231–249.
  • [27] DUBOVIK O., SINYUK A., LAPYONOK T., HOLBEN B.N., MISHCHENKO M., YANG P., ECK T.F., VOLTEN H., MUNOZ O., VEIHELMANN B., VAN DER ZENDE W.J., LEON J.-F., SOROKIN M., SLUTSKER I., Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, Journal of Geophysical Research 111, 2006, p. D11208.
  • [28] ROLPH G.D., Real-time Environmental Applications and Display sYstem (READY), Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD 2003.
  • [29] DRAXLER R.R., ROLPH G.D., HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY, Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD 2003.
  • [30] MORYS M., MIMS F.M., HAGERUP S., ANDERSON S.E., BAKER A., KIA J., WALKUP T., Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, Journal of Geophysical Research 106, 2001, pp. 14573–14582.
  • [31] HOLBEN B.N., ECK T.F., SLUTSKER I., TANRÉ D., BUIS J.P., SETZER A., VERMOTE E., REAGAN J.A., KAUFMAN Y.J., NAKAJIMA T., LAVENU F., JANKOWIAK I., SMIRNOV A., AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sensing of Environment 66(1), 1998, pp. 1–16.
  • [32] ANGSTROM A., The parameters of atmospheric turbidity, Tellus 16, 1964, pp. 64–75.
  • [33] STELMASZCZYK K., DELL’AGLIO M., CHUDZYŃSKI S., STACEWICZ T., WÖSTE L., Analytical function for lidar geometrical compression form-factor calculations, Applied Optics 44(7), 2005, pp. 1323–1331.
  • [34] LIU Z., SUGIMOTO N., MURAYAMA T., Extinction-to-backscatter ratio of Asian dust observed by high-spectral-resolution lidar and Raman lidar, Applied Optics 41(15), 2002, pp. 2760–2767.
  • [35] BIELE J., BEYERLE G., BAUMGARTEN G., Polarization lidar: Correction of instrumental effects, Optics Express 7(12), 2000, pp. 427–435.
  • [36] STEPHENS D.L., Remote Sensing of the Lower Atmosphere, University Press, New York, 1994.
  • [37] KLETT J.D., Stable analytical inversion solution for processing lidar returns, Applied Optics 20(2), 1981, pp. 211–220.
  • [38] FERNALD F.G., Analysis of atmospheric lidar observations: some comments, Applied Optics 23(5), 1984, pp. 652–653.
  • [39] WATERMAN P.C., Symmetry, unitarity, and geometry in electromagnetic scattering, Physical Review D 3(4), 1971, pp. 825–839.Saharan aerosol sensed over Warsaw by backscatter depolarization lidar 237
  • [40] MISHCHENKO M.I., TRAVIS L.D., KAHN R., WEST R.A., Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, Journal of Geophysical Research 102, 1997, pp. 16831–16847.
  • [41] HESS M., KOEPKE P., SCHULT I., Optical properties of aerosols and clouds: The software package OPAC, Bulletin of the American Meteorological Society 79(5), 1998, pp. 831–844.
  • [42] KALASHNIKOVA O.V., SOKOLIK I.N., Modeling the radiative properties of nonspherical soil-derived mineral aerosols, Journal of Quantitative Spectroscopy and Radiative Transfer 87(2), 2004, pp. 137–166.
  • [43] NOUSIAINEN T., KAHNERT M., VEIHELMANN B., Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, Journal of Quantitative Spectroscopy and Radiative Transfer 101(3), 2006, pp. 471–487.
  • [44] SCHUSTER G.L., DUBOVIK O., HOLBEN B.N., Angstrom exponent and bimodal aerosol size distributions, Journal of Geophysical Research 111, 2006, p. D07207.
  • [45] MARKOWICZ K.M, FLATAU P.J., KARDAS A.E., REMISZEWSKA J., STELMASZCZYK K., WOESTE L., Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, Journal of Atmospheric and Oceanic Technology 25(6), 2008, pp. 928–944.
  • [46] TAFURO A.M., BARNABA F., DE TOMASI F., PERRONE M.R., GOBBI G.P., Saharan dust particle properties over the central Mediterranean, Atmospheric Research 81(1), 2006, pp. 67–93.
  • [47] KOREN I., GANOR E., JOSEPH J.H., On the relation between size and shape of desert dust aerosol, Journal of Geophysical Research 106, 2001, pp. 18047–18054.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0143
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.