PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation of a four-beamlets laser array through an apertured optical system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By expanding the hard-aperture function into a finite sum of complex Gaussian functions, an analytical formula for a four-beamlets laser array propagating through an apertured ABCD optical system is derived based on the generalized Collins formula. As a numerical example, the on-axis irradiance of a four-beamlets laser array focused by a squarely apertured bifocal thin lens is studied, and it is found that the focused irradiance is closely related to the parameters of the optical system and the laser array. Our formula provides a convenient way for studying the paraxial propagation of a four-beamlets laser array through an apertured ABCD optical system.
Czasopismo
Rocznik
Strony
155--164
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
autor
autor
autor
  • Department of Physics, Anhui Normal University, Wuhu 241000, China
Bibliografia
  • [1] NISHI N., JITSUNO T., TSUBAKIMOTO K., MATSUOKA S., MIYANAGA N., NAKATSUKA M., Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target, Optical Review 7(3), 2000, pp. 216–220.
  • [2] LIU J., SHAO Z., ZHANG H., MENG X., ZHU L., JIANG M., Diode-laser-array end-pumped 14.3 W Nd:GdVO4 solid-state laser at 1.06 m, Applied Physics B: Lasers and Optics 69(3), 1999, pp. 241–243.
  • [3] BAKER H.J., HALL D.R., HORNBY A.M., MORLEY R.J., TAGHIZADEH M.R., YELDEN E.F., Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers, IEEE Journal of Quantum Electronics 32(3), 1996, pp. 400–407.
  • [4] ABRAMSKI K.M., COLLEY A.D., BAKER H.J., HALL D.R., High-power two-dimensional waveguide CO2 laser arrays, IEEE Journal of Quantum Electronics 32(2), 1996, pp. 340–349.
  • [5] CHANN B., NELSON I., WALKER T.G., Frequency-narrowed external-cavity diode-laser-array bar, Optics Letters 25(18), 2000, pp. 1352–1354.
  • [6] AL-RASHED A.R., SALEH B.E.A., Decentered Gaussian beams, Applied Optics 34(30), 1995, pp. 6819–6825.
  • [7] STROHSCHEIN J.D., SEGUIN H.J.J., CAPJACK C.E., Beam propagation constants for a radial laser array, Applied Optics 37(6), 1998, pp. 1045–1048.
  • [8] PALMA C., Decentered Gaussian beams, ray bundles, and Bessel–Gauss beams, Applied Optics 36(6), 1997, pp. 1116–1120.
  • [9] DESHAZER D.J., BREBAN R., OTT E., ROY R., Detecting phase synchronization in a chaotic laser array, Physical Review Letters 87(4), 2001, p. 044101.
  • [10] CAI Y. LIN Q., Decentered elliptical Gaussian beam, Applied Optics 41(21), 2002, pp. 4336–4340.
  • [11] CAI Y., LIN Q., Decentered elliptical Hermite–Gaussian beam, Journal of the Optical Society of America A: Optics, Image Science and Vision 20(6), 2003, pp. 1111–1119.
  • [12] CAI Y., CHEN Y., EYYUBOĞLU H.T., BAYKAL Y., Propagation of laser array beams in a turbulent atmosphere, Applied Physics B: Lasers and Optics 88(3), 2007, pp. 467–475.
  • [13] CAI Y., LIN Q., BAYKAL Y., EYYUBOĞLU H.T., Off-axis Gaussian Schell-model beam and partially coherent laser array beam in a turbulent atmosphere, Optics Communications 278(1), 2007, pp. 157–167.
  • [14] EYYUBOĞLU H.T., BAYKAL Y., CAI Y., Scintillations of laser array beams, Applied Physics B: Lasers and Optics 91(2), 2008, pp. 265–271.
  • [15] CAI Y., LIN Q., Four-beamlets laser array and its propagation, Optics and Laser Technology 37(6), 2005, pp. 483–489.
  • [16] LI Y., WOLF E., Focal shifts in diffracted converging spherical waves, Optics Communications 39(4), 1981, pp. 211–215.
  • [17] LIU X., PU J., Focal shift and focal switch of partially coherent light in dual-focus systems, Optics Communications 252(4–6), 2005, pp. 262–267.
  • [18] DONG M., PU J., Effective Fresnel number and the focal shifts of focused partially coherent beams, Journal of the Optical Society of America A: Optics, Image Science and Vision 24(1), 2007, pp. 192–196.
  • [19] PU J., ZHANG H., NEMOTO S., Spectral shifts and spectral switches of partially coherent light passing through an aperture, Optics Communications 162(1–3), 1999, pp. 57–63.
  • [20] CAI Y., HU L., Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system, Optics Letters 31(6), 2006, pp. 685–687.
  • [21] HU L., CAI Y., Analytical formula for a circular flattened Gaussian beam propagating through a misaligned paraxial ABCD optical system, Physics Letters A 360(2), 2006, pp. 394–399.
  • [22] CAI Y., HE S., Propagation of hollow Gaussian beams through apertured paraxial optical systems, Journal of the Optical Society of America A: Optics, Image Science and Vision 23(6), 2006, pp. 1410–1418.
  • [23] CAI Y., HE S., Propagation of a Laguerre–Gaussian beam through a slightly misaligned paraxial optical system, Applied Physics B: Lasers and Optics 84(3), 2006, pp. 493–500.
  • [24] CAI Y., ZHANG L., Propagation of a decentered elliptical Gaussian beam through apertured aligned and misaligned paraxial optical systems, Applied Optics 45(22), 2006, pp. 5758–5766.
  • [25] CAI Y., ZHANG L., Propagation of a hollow Gaussian beam through a paraxial misaligned optical system, Optics Communications 265(2), 2006, pp. 607–615.
  • [26] LU X., CAI Y., Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system, Optics Communications 269(1), 2007, pp. 39–46.
  • [27] CAI Y., LU X., Propagation of Bessel and Bessel–Gaussian beams through a unapertured or apertured misaligned paraxial optical systems, Optics Communications 274(1), 2007, pp. 1–7.
  • [28] WANG F., CAI Y., LIN Q., Experimental observation of truncated fractional Fourier transform for a partially coherent Gaussian Schell-model beam, Journal of the Optical Society of America A: Optics, Image Science and Vision 25(8), 2008, pp. 2001–2010.
  • [29] CAI Y., LU X., EYYUBOĞLU H.T., BAYKAL Y., Paraxial propagation of a partially coherent flattened Gaussian beam through apertured ABCD optical systems, Optics Communications 281(12), 2008, pp. 3221–3229.
  • [30] ARNAUD J.A., KOGELNIK H., Gaussian light beams with general astigmatism, Applied Optics 8(8), 1969, pp. 1687–1693.
  • [31] COLLINS S.A., Lens-system diffraction integral written in terms of matrix optics, Journal of the Optical Society of America 60(9), 1970, pp. 1168–1177.
  • [32] WEN J.J., BREAZEALE M.A., A diffraction beam field expressed as the superposition of Gaussian beams, Journal of the Acoustical Society of America 83(5), 1988, pp. 1752–1756.
  • [33] DING D., LIU X., Approximate description for Bessel, Bessel–Gauss, and Gaussian beams with finite aperture, Journal of the Optical Society of America A: Optics, Image Science and Vision 16(6), 1999, pp. 1286–1293.
  • [34] ERDELYI A., MAGNUS W., OBERHETTINGER F., Tables of Integral Transforms, McGraw-Hill, 1954.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0137
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.