PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of energy pooling collisions in formation of a cesium plasma by continuous wave resonance excitation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generation of plasma in cesium vapor excited by cw laser is investigated theoretically. We have developed a computational model which quantitatively explains the laser power dependences of electron energy distribution function (EEDF) and the level population densities which were created during the interaction. The energy spectra of the electrons emerging from the interaction show that the mechanisms by which electrons gain energy through the resonant system can significantly increase the density of the resonant plasma. The nonlinear behaviour of the ion current suggests that the plasma formation is initiated via collisional ionization and collisional excitation, such as associative ionization, Penning ionization, or photoionization as well as energy pooling collisions.The Cs - Cs atom collisions play important role in the formation of a highly Cs plasma with the use of a relatively low power laser to excite a resonance transition. A comparison between the behaviour of the calculated ion current as a function of a laser power is proved to be a reasonable agreement with that measured by Pappas et al. (Appl. Spectrosc. 54, 2000, p. 1245). The results may be useful in designing and developing cw metal vapor lasers.
Słowa kluczowe
Czasopismo
Rocznik
Strony
129--141
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
Bibliografia
  • [1] LUCATORTO T.B., MCILRATH T.J., Laser excitation and ionization of dense atomic vapors, Applied Optics 19(23), 1980, pp. 3948–3956.
  • [2] LUCATORTO T.B., MCILRATH T.J., Efficient laser production of a Na+ ground-state plasma column: Absorption spectroscopy and photoionization measurement of Na+, Physical Review Letters 37(7), 1976, pp. 428–431.
  • [3] TAM A.C., HAPPER W., Plasma production in a Cs vapor by a weak CW laser beam at 6010 Å, Optics Communications 21(3), 1977, pp. 403–407.
  • [4] TAM A.C., Quasiresonant laser-produced plasma: An efficient mechanism for localized breakdown, Journal of Applied Physics 51(9), 1980, pp. 4682–4687.
  • [5] ALLEGRINI M., ALZETTA G., KOPYSTYNSKA A., MOI L., ORRIOLS G., Electronic energy transfer induced by collision between two excited sodium atoms, Optics Communications 19(1), 1976, pp. 96–99.
  • [6] ALLEGRINI M., GABBANINI C., MOI L., Energy pooling processes in laser excited alkali vapors: An update on experiments, Le Journal de Physique Colloques 46(C1), 1985, pp. 61–73.
  • [7] ALLEGRINI M, GABBANINI C., MOI L., COLLE R., Cross-section measurement and theoretical evaluation for the energy-transfer collision Na(3P)+Na(3P) →Na(4F)+Na(3S), Physical Review A 32(4), 1985, pp. 2068–2076.
  • [8] DAVIDSON S.A., KELLY J.F., GALLAGHER A., Final state distribution for Na(3PJ) + Na(3PJ' ) →Na(nLJ'') + Na(3S1/2) collisional excitation transfer, Physical Review A 33(6), 1986, pp. 3756–3766.
  • [9] CHUN HE, BERNHEIM R.A., Energy transfer and energy pooling from 22P3/2, 1/2 excited Li atoms in Li vapor, Chemical Physics Letters 190(5), 1992, pp. 494–496.
  • [10] GOZZINI S., ABDULLAH S.A., ALLEGRINI M., CERMONCINI A., MOI L., Heternuclear energy pooling collisions: The Na(3P) + K(4P) reaction, Optics Communications 63(2), 1987, pp. 97–102.
  • [11] GABBANINI C., GOZZINI S., SQUADRITO G., ALLEGRINI M., MOI L., Energy-pooling collisions for K(4P) + Rb(5P) and Na(3P) + Rb(5P) heteronuclear systems, Physical Review A 39(12), 1989, pp. 6148–6153.
  • [12] FUSO F., CIAMPINI D., ARIMONDO E., GABBANINI C., Ion processes in the photoionization of laser cooled alkali atoms, Optics Communications 173(1–6), 2000, pp. 223–232.
  • [13] AYMER M., AZIZI S., DULIEU O., Model-potential calculations for ground and excited states of and RbCs+ ions, JJournal of Physics B 36(24), 2003, pp. 4799–4812.
  • [14] JABBOUR Z.J., NAMIOTKA R.K., HUENNEKENS J., ALLEGRINI M.M., MILOSEVIC S., DE TOMASI F., Energy pooling collisions in cesium: 6PJ + 6PJ →6S + (nl = 7P, 6D, 8S, 4F), Physical Review A 54(2), 1996, pp. 1372–1384.
  • [15] DE TOMASI F., MILOSEVIC S., VERKERK P., FIORETTI A., ALLEGRINI M., JABBOUR Z.J., HUENNEKENS J., Experimental study of caesium 6PJ + 6PJ →7PJ' + 6S energy pooling collisions and modeling of the excited atom density in the presence of optical pumping and radiation trapping, Journal of Physics B 30(21), 1997, pp. 4991–4998.
  • [16] VADLA C., Energy pooling in cesium vapor Cs*(6PJ) + Cs*(6PJ') →Cs(6S) + Cs**(6D), The European Physical Journal D 1(3), 1998, pp. 259–264.
  • [17] HOON-SOO KANG, JAE-PIL KIM, CHA-HWAN OH, PILL-SOO KIM, Energy pooling collision in Cs atomic vapor, Journal of the Korean Physical Society 40(2), 2002, pp. 220–223.
  • [18] QIAN WANG, YIFAN SHEN, KANG DAI, Rate coefficients measurement for the energy-pooling collisions Cs(5D) + Cs(5D) →Cs(6S) + Cs(nl = 9D, 11S, 7F), Optics Communications 281(8), 2008, pp. 2112–2119.
  • [19] MEASURES R.M., Efficient laser ionization of sodium vapor – A possible explanation based on superelastic collisions and reduced ionization potential, Journal of Applied Physics 48(7), 1977, pp. 2673–2675.
  • [20] MEASURES R.M., CARDINAL P.G., Laser ionization based on resonance saturation – a simple model description, Physical Review A 23(2), 1981, pp. 804–815.
  • [21] MAHMOUD M.A., Electron energy distribution function in laser-excited rubidium atoms, Journal of Physics B 38(10), 2005, pp. 1545–1556.
  • [22] MAHMOUD M.A., GAMAL Y.E.E., ABD EL-RAHMAN H.A., Ion formation in laser-irradiated cesium vapor, Journal of Quantitative Spectroscopy and Radiative Transfer 102(2), 2006, pp. 241–250.
  • [23] PAPPAS D., SMITH B.W., OMENETTO N., WINEFORDNER J.D., Formation of a cesium plasma by continuous-wave resonance excitation, Applied Spectroscopy 54(8), 2000, pp. 1245–1249.
  • [24] BEZUGLOV N.N., KLYUCHAREV A.N., SHEVEREV V.A., Associative ionization rate constants measured in cell and beam experiments, Journal of Physics B 20(11), 1987, pp. 2497–2513.
  • [25] DOBROLEZH B.V., KLYUCHAREV A.N., SEPMAN V.YU., Determination of the rate constant of associative ionization process in optically excited cesium vapor, Optics and Spectroscopy 38, 1975, pp. 630–632.
  • [26] KLYUCHAREV A.N., BEZUGLOV N.N., MATAVEEV A.A., MIHAJLOV A.A., IGNJATOVIC LJ.M., DIMITRIJEVIC M.S., Rate coefficients for the chemi-ionization processes in sodium- and other alkali-metal geocosmical plasmas, New Astronomy Reviews 51(7), 2007, pp. 547–562.
  • [27] PATTERSON B.M., TAKEKOSHI T., KNIZE R.J., Measurment of photoionization cross section of the 6P3/2 state of cesium, Physical Review A 59(3), 1999, pp. 2508–2510.
  • [28] GILBERT S.L., NOECKER M.C., WIEMAN C.E., Absolute measurement of the photoionization cross section of the excited 7S state of cesium, Physical Review A 29(6), 1984, pp. 3150–3153.
  • [29] HEINZMANN U., SCHINKOWSKI D., ZEMAN H.D., Comment on measuring photoionization cross sections of excited states, Applied Physics A 12(1), 1977, p. 113.
  • [30] PAPPAS D., PIXLEY N.C., SMITH B.W., WINERFORDNER J.D., Fluorescence monitoring of laser induced population changes of 6P and 6D levels in cesium vapor, Spectrochimica Acta Part B 55(9), 2000, pp. 1503–1509.
  • [31] CHERET M., BARBIER L., LINDINGER W., DELOCHE R., Penning and associative ionisation of highly excited rubidium atoms, Journal of Physics B 15(19), 1982, pp. 3463–3477.
  • [32] MAHMOUD M.A., Kinetics of and Rb+ formation in laser-excited rubidium vapor, Central European Journal of Physics 6(3), 2008, pp. 530–538.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.