PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the different energy-gap multilayer structures using near field microscopy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the materials which can be used in high-temperature electronic devices is silicon carbide (SiC). Its properties are very promising, however, a number of technological issues must be solved first, and complex phenomena connected with contact development must be investigated. In this paper, some results the measurements of electrical parameters of the silicon carbide based multilayer SiC:Zr-NiCrSi-Ag systems developed on glass substrate by magnetron co-sputtering method from compositional target are presented. This system was tested electrically as potentially useful to SiC and TiO2 layers contact. Due to the presence of potential barriers, observed with conventional methods, one should use a more precise and sophisticated instrument. One of the important tools which can be used in order to obtain the information about morphological and electrical properties of the surface is the near-field microscopy. Two modes were used during the measurements: EFM (electrostatic force microscopy) and SP (surface potential imaging). Those techniques allow obtaining several sets of data describing different properties of the sample. Moreover, its sophisticated nature delivers the information in submicron scale and no influence on the structure and phenomena is introduced. Also the multichannel data acquisition allows a certain amount of data concerning signals to be collected, which is very useful for the analysis of results in order to identify the presence of artifacts. Some results obtained during preliminary work are hereby presented and described.
Czasopismo
Rocznik
Strony
943--950
Opis fizyczny
bibliogr. 23 poz.,
Twórcy
autor
autor
autor
  • Electrotechnical Institute, Division of Electrotechnology and Materials Science, ul. M. Skłodowskiej-Curie 55/61, 50-369 Wrocław, Poland
Bibliografia
  • [1] MOLLER S., LIN J., OBERMEIER E., Material and design considerations for low-power microheater modules for gas-sensor applications, Sensors and Actuators B: Chemical 25(1–3), 1995, pp. 343–346.
  • [2] WICHE G., BERNS A., STEFFES H., OBERMEIER E., Thermal analysis of silicon carbide based microhotplates for metal oxide gas sensors, Sensors and Actuators A: Physical 123–124, 2005, pp. 12–17.
  • [3] MURARKA S.P., Silicide thin films and their applications in microelectronics, Intermetallics 3(3), 1995, pp. 173–186.
  • [4] CIMALLA V., PEZOLDT J., AMBACHER O., Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications, Journal of Physics D: Applied Physics 40(20), 2007, pp. 6386–6434.
  • [5] ILIESCU C., CHEN B., Thick and low-stress PECVD amorphous silicon for for MEMS applications, Journal of Micromechanics and Microengineering 18(1), 2008, p. 015024.
  • [6] WRIGHT N.G., HORSFALL A.B., SiC sensors: a review, Journal of Physics D: Applied Physics 40(20), 2007, pp. 6345–6354.
  • [7] FAWCETT T.J., WOLAN J.T., MYERS R.L., WALKER J., SADDOW S.E., Wide-range (0.33%–100%) 3C–SiC resistive hydrogen gas sensor development, Applied Physics Letters 85(3), 2004, pp. 416–419.
  • [8] SPETZ A.L., UNEUS L., SVENNINGSTORP H., TOBIAS P., EKEDAHL L.-G., LARSSON O., GORAS A., SAVAGE S., HARRIS C., MARTENSSON P., WIGREN R., SALOMONSSON P., HAGGENDAHL B., LJUNG P., MATTSSON M., LUNDSTROM I., SiC based field effect gas sensors for industrial applications, Physica Status Solidi (a) 185(1), 2001, pp. 15–25.
  • [9] GÓRECKA-DRZAZGA A., DZIUBAN J., BARGIEL S., PROCIÓW E., Mold-type SiC emitters with nanoholes at the apex, Measurements Science and Technology 17(1), 2006, pp. 45–49.
  • [10] JANZEN E., HENRY A., BERGMAN J.P., ELLISON A., MAGNUSSON B., Material characterization need for SiC-based devices, Materials Science in Semiconductor Processing 4(1–3), 2001, pp. 181–186.
  • [11] MOHNEY S.E., HULL B.A., LIN J.Y., CROFTON J., Morphological study of the Al–Ti ohmic contact to p-type SiC, Solid-State Electronics 46(5), 2002, pp. 689–693.
  • [12] BISWAS N., WANG X., GANGOPADHYAY S., Electrical properties of amorphous silicon carbide films, Applied Physics Letters 80(18), 2002, pp. 3439–3442.
  • [13] BERLIND T., HELLGREN N., JOHANSSON M.P., HULTMAN L., Microstructure, mechanical properties, and wetting behavior of Si–C–N thin films grown by reactive magnetron sputtering, Surface and Coatings Technology 141(2–3), 2001, pp. 145–155.
  • [14] KIKUCHI N., KUSANO E., TANAKA T., KINBARA A., NANTO H., Preparation of amorphous Si1–xCx (0 ≤ x ≤ 1) films by alternate deposition of Si and C thin layers using a dual magnetron sputtering source, Surface and Coatings Technology 149(1), 2002, pp. 76–81.
  • [15] WANG M., HUANG A.P.,WANG B., YAN H., YAO Z.Y., MORIMOTO A., SHIMIZU T., Bias effects on structure of sputtered SiC films, Materials Science and Engineering B 85(1), 2001, pp. 25–27.
  • [16] FISSELA A., KAISERA U., SCHROTERA B., RICHTERA W., BECHSTEDT F., MBE growth and properties of SiC multi-quantum well structures, Applied Surface Science 184(1–4), 2001, pp. 37–42.
  • [17] NEYRET E., DI CIOCCIO L., BLUET J.M., PERNOT J., VICENTE P., ANGLOS D., LAGADAS M., BILLON T., Deposition, evaluation and control of 4H and 6H SiC epitaxial layers device application, Materials Science and Engineering B 80(1–3), 2001, pp. 332–336.
  • [18] CROFTON J., MOHNEY S.E., WILLIAMS J.R., ISAACS-SMITH T., Finding the optimum Al–Ti alloy composition for use as an ohmic contact to p-type SiC, Solid-State Electronics 46(1), 2002, pp. 109–113.
  • [19] TARNTAIR F.G., WU J.J., CHEN K.H., WEN C.Y., CHEN L.C., CHENG H.C., Field emission properties of two-layer structured SiCN films, Surface and Coatings Technology 137(2–3), 2001, pp. 152–157.
  • [20] STERN J.E., TERRIS B.D., MAMIN H.J., RUGAR D., Deposition and imaging of localized charge on insulator surfaces using a force microscope, Applied Physics Letters 53(26), 1988, pp. 2717–2719.
  • [21] TERRIS B.D., STERN J.E., RUGAR D., MAMIN H.J., Localized charge force microscopy, Journal of Vacuum Science and Technology A 8(1), 1990, pp. 374–377.
  • [22] NONNENMACHER M., O’BOYLE M.P., WICKRAMASIGHE H.K., Kelvin probe force microscopy, Applied Physics Letters 58(25), 1991, pp. 2921–2923.
  • [23] JACOBS H.O., KNAPP H.F., MULLER S., STEMMER A., Surface potential mapping: A qualitative material contrast in SPM, Ultramicroscopy 69(1), 1997, pp. 39–49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0118
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.