Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present the results of optical measurements performed on structures consisting of an InGaAs quantum well (QW), separated by a thin barrier from a layer of self-assembled InGaAs quantum dots (QDs). Such a kind of design is called a tunnel injection structure, because its functionality is based on the tunnelling of carriers from a QW to QDs, preferably with the assistance of optical phonons. In this approach, the injector QW serves as a reservoir of the carriers (due to much higher efficiency of carrier collection) and alleviates the problem of long relaxation times needed for carriers to reach the QDs ground state. In order to investigate the structures several complementary experimental techniques are applied. Photoreflectance, an absorption-like modulation spectroscopy, gives the information about the optical transitions and the electronic structure. The temperature evolution of photoluminescence allows emission efficiency and carrier losses to be determined. Photoluminescence excitation probes directly the carrier transfer from QW to the dots. The interpretation of the results is supported by the calculations in the envelope function formalism. It has been found out that the wavefunction position of the lowest lying levels depends on the QW parameters and thus different regimes of tunnelling are proposed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
923--932
Opis fizyczny
bibliogr. 27 poz.,
Twórcy
autor
autor
autor
autor
autor
autor
autor
autor
- Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] BHATTACHARYA P., GHOSH S., PRADHAN S., SINGH J., ZONG-KWEI WU, URAYAMA J., KYOUNGSIK KIM, NORRIS T.B., Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers, IEEE Journal of Quantum Electronics 39(8), 2003, pp. 952–962.
- [2] MI Z., FATHPOUR S., BHATTACHARYA P., Measurement of modal gain in 1.1 μm p-doped tunnel injection InGaAs/GaAs quantum dot laser heterostructures, Electronics Letters 41(23), 2005, pp. 1282–1283.
- [3] MI Z., BHATTACHARYA P., FATHPOUR S., High-speed 1.3 μ m tunnel injection quantum-dot lasers, Applied Physics Letters 86(15), 2005, p. 153109.
- [4] GHOSH S., PRADHAN S., BHATTACHARYA P., Dynamic characteristics of high-speed In0.4Ga0.6 As/GaAs self-organized quantum dot lasers at room temperature, Applied Physics Letters 81(16), 2002, pp. 3055–3057.
- [5] FATHPOUR S., BHATTACHARYA P., PRADHAN S., GHOSH S., Linewidth enhancement factor and near--field pattern in tunnel injection In0.4Ga0.6 As self-assembled quantum dot lasers, Electronics Letters 39(20), 2003, pp. 1443–1445.
- [6] BHATTACHARYA P., GHOSH S., Tunnel injection In0.4Ga0.6 As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature, Applied Physics Letters 80(19), 2002, pp. 3482–3484.
- [7] SĘK G., POLOCZEK P., PODEMSKI P., KUDRAWIEC R., MISIEWICZ J., SOMERS A., HEIN S., HÖFLING S., FORCHEL A., Experimental evidence on quantum well–quantum dash energy transfer in tunnel injection structures for 1.55 μm emission, Applied Physics Letters 90(8), 2007, p. 081915.
- [8] SĘK G., PODEMSKI P., KUDRAWIEC R., MISIEWICZ J., SOMERS A., HEIN S., HÖFLING S., REITHMAIER J.P., FORCHEL A., Efficient energy transfer in InAs quantum dash based tunnel-injection structures at low temperatures, Proceedings of SPIE 6481, 2007, p. 64810F.
- [9] PODEMSKI P., KUDRAWIEC R., MISIEWICZ J., SOMERS A., REITHMAIER J.P., FORCHEL A., On the tunnel injection of excitons and free carriers from In0.53Ga0.47 As/In0.53Ga0.23 Al0.24 As quantum well to InAs/In0.53Ga0.23 Al0.24 As quantum dashes, Applied Physics Letters 89(6), 2006, p. 061902.
- [10] ELISEEV P.G., LI H., LIU T., NEWELL T.C., LESTER L.F., MALLOY K.J., Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers, IEEE Journal of Selected Topics in Quantum Electronics 7, 2001, p. 135.
- [11] LEDENTSOV N.N., KOVSH A.R., ZHUKOV A.E., MALEEV N.A., MIKHRIN S.S., VASIL’EV A.P., SEMENOVA E.S., MAXIMOV M.V., SHERNYAKOV YU.M., KRYZHANOVSKAYA N.V., USTINOV V.M.,BIMBERG D., High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range, Electronics Letters 39(15), 2003, pp. 1126–1128.
- [12] MAKSIMOV M.V., GORDEEV N.Y., ZAITSEV S.V., KOP’EV P.S., KOCHNEV I.V., LEDENTSOV N.N., LUNEV A.V., RUVIMOV S.S., SAKHAROV A.V., TSATSUL’NIKOV A.F., SHERNYAKOV Y.M., ALFEROV Z.I., BIMBERG D., Quantum dot injection heterolaser with ultrahigh thermal stability of the threshold current up to 50 °C, Semiconductors 31(2), 1997, pp. 124–126.
- [13] SHCHEKIN O.B., DEPPE D.G., 1.3 μm InAs quantum dot laser with To = 161 K from 0 to 80 °C, Applied Physics Letters 80(18), 2002, pp. 3277–3279.
- [14] FATHPOUR S., MI Z., BHATTACHARYA P., KOVSH A.R., MIKHRIN S.S., KRESTNIKOV I.L., KOZHUKHOV V., LEDENTSOV N.N., The role of Auger recombination in the temperature-dependent output characteristics (T0 =∞) of p-doped 1.3 μm quantum dot lasers, Applied Physics Letters 85(22), 2004, pp. 5164–5166.
- [15] VARANGIS P.M., LI H., LIU G.T., NEWELL T.C., STINTZ A., FUCHS B., MALLOY K.J., LESTER L.F., Low-threshold quantum dot lasers with 201 nm tuning range, Electronics Letters 36(18), 2000, pp. 1544–1545.
- [16] SOSNOWSKI T.S., NORRIS T.B., JIANG H., SINGH J., KAMATH K., BHATTACHARYA P., Rapid carrier relaxation in In0.4Ga0.6 As/GaAs quantum dots characterized by differential transmission spectroscopy, Physical Review B 57(16), 1998, pp. R9423–R9426.
- [17] RUDNO-RUDZIŃSKI W., KUDRAWIEC R., SĘK G., MISIEWICZ J., SOMERS A., SCHWERTBERGER R., REITHMAIER J.P., FORCHEL A., Photoreflectance investigations of InAs quantum dashes embedded in In0.53Ga0.47 As/In0.53Ga0.23 Al0.24 As quantum well grown on InP substrate, Applied Physics Letters 88(14), 2006, p. 141915.
- [18] RUDNO-RUDZIŃSKI W., SĘK G., MISIEWICZ J., LAMAS T.E., QUIVY A.A., The formation of self-assembled InAs/GaAs quantum dots emitting at 1.3 μ m followed by photoreflectance spectroscopy, Journal of Applied Physics 101(7), 2007, p. 073518.
- [19] JONSSON B., ENG S.T., Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method, IEEE Journal of Quantum Electronics 26(11), 1990, pp. 2025–2035.
- [20] MISIEWICZ J., SITAREK P., SĘK G., KUDRAWIEC R., Semiconductor heterostructures and device structures investigated by photoreflectance spectroscopy, Materials Science 21(3), 2003, pp. 263–320.
- [21] SĘK G., PODEMSKI P., RUDNO-RUDZINSKI W., GUMIENNY Z., MISIEWICZ J., Microphotoreflectance spectroscopy – a modulation technique with high spatial resolution, Optica Applicata 37(4), 2007, pp. 439–447.
- [22] VURGAFTMAN I., MEYER J.R., RAM-MOHAN L.R., Band parameters for III–V compound semiconductors and their alloys, Journal of Applied Physics 89(11), 2001, pp. 5815–5875.
- [23] SEK G., POLOCZEK P., RYCZKO K., MISIEWICZ J., LÖFFLER A., REITHMAIER J. P., FORCHEL A., Photoreflectance determination of the wetting layer thickness in the InxGa1–x As/GaAs quantum dot system for a broad indium content range of 0.3–1, Journal of Applied Physics 100(10), 2006,p. 103529.
- [24] BAHDER T.B., Eight-band k·p model of strained zinc-blende crystals, Physical Review B 41(17), 1990, pp. 11992–12001.
- [25] STIER O., BIMBERG D., Modeling of strained quantum wires using eight-band k·p theory, Physical Review B 55(12), 1997, pp. 7726–7732.
- [26] GRUNDMANN M., STIER O., BIMBERG D., InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure, Physical Review B 52(16), 1995, pp. 11969–11981.
- [27] LI L.H., PATRIARCHE G., CHAUVIN N., RIDHA P., ROSSETTI M., ANDRZEJEWSKI J., SĘK G., MISIEWICZ J., FIORE A., Controlling the aspect ratio of quantum dots: From columnar dots to quantum rods, IEEE Journal of Selected Topics in Quantum Electronics 14(4), 2008, pp. 1204–1213.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0116