PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of ZrO2:Tb via microwave hydrothermal method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Terbium doped zirconium dioxide was successfully synthesized using microwave hydrothermal method. The powder is strongly agglomerated and has mean crystallite size around 6 nm. The density of obtained powders is significantly lower than density of bulk zirconium dioxide indicating the existence of zirconium and dopant hydroxides remaining after the hydrothermal process. The effect of terbium on morphology, phase composition, specific surface area and density of the samples was determined.
Słowa kluczowe
Czasopismo
Rocznik
Strony
773--779
Opis fizyczny
bibliogr. 15 poz.,
Twórcy
autor
  • West Pomeranian University of Technology, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • [1] KELLY R., DENRY I., Stabilized zirconia as a structural ceramic: An overview, Dental Materials 24(3), 2008, pp. 289–298.
  • [2] XIULING JIAO, DAIRONG CHEN, LIHUA XIAO, Effects of organic additives on hydrothermal zirconia nanocrystallites, Journal of Crystal Growth 258(1–2), 2003, pp. 158–162.
  • [3] STICHERT W., SCHUTH F., Influence of crystallite size on the properties of zirconia, Chemistry of Materials 10(7), 1998, pp. 2020–2026.
  • [4] VALMALETTE J.C., ISA M., Size effects on the stabilization of ultrafine zirconia nanoparticles,Chemistry of Materials 14(12), 2002, pp. 5098–5102.
  • [5] GARVIE R.C., The occurrence of metastable tetragonal zirconia as a crystallite size effect, The Journal of Physical Chemistry 69(4), 1965, pp. 1238–1243.
  • [6] HUI WANG, GUANGSHE LI, YANFENG XUE, LIPING LI, Hydrated surface structure and its impacts on the stabilization of t-ZrO2, Journal of Solid State Chemistry 180(10), 2007, pp. 2790–2797.
  • [7] GONG-YI GUO, YU-LI CHEN, A nearly pure monoclinic nanocrystalline zirconia, Journal of Solid State Chemistry 178(5), 2005, pp. 1675–1682.
  • [8] BOUVIER P., DJURADO E., LUCAZEAU G., LE BIHAN T., High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia, Physical Review B 62(13), 2000, pp. 8731–8737.
  • [9] BEENA TYAGI, KALPESH SIDHPURIA, BASHA SHAIK, RAKSH VIR JASRA, Synthesis of nanocrystalline zirconia using sol–gel and precipitation techniques, Industrial and Engineering Chemistry Research 45(25), 2006, pp. 8643–8650.
  • [10] PITICESCU R.R., MONTY C., TALOI D., MOTOC A., AXINTE S., Hydrothermal synthesis of zirconia nanomaterials, Journal of the European Ceramic Society 21(10–11), 2001, pp. 2057–2060.
  • [11] BECKER J., HALD P., BREMHOLM M., PEDERSEN J.S., CHEVALLIER J., IVERSEN S.B., IVERSEN B.B., Critical size of crystalline ZrO2 nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol, ACSNano 2(5), 2008, pp. 1058–1068.
  • [12] WEINGARTNER H., FRANCK E.U., Supercritical water as a solvent, Angewandte Chemie International Edition 44(18), 2005, pp. 2672–2692.
  • [13] HAKUTA Y., OHASHI T., HAYASHI H., ARAI K., Hydrothermal synthesis of zirconia nanocrystals in supercritical water, Journal of Materials Research 19(8), 2004, pp. 2230–2234.
  • [14] GODLEWSKI M., YATSUNENKO S., NADOLSKA A., OPALIŃSKA A., ŁOJKOWSKI W., DROZDOWICZ-TOMSIA K., GOLDYS E.M., Nanoparticles doped with TM and RE ions for applications in optoelectronics, Optical Materials 31(3), 2009, pp. 490–495.
  • [15] TRAN KIM ANH, NGWEN DAI HUNG, NQW HUU CHI, NGWEN MANH SON, Energy transfer between Tb3+ and Eu3+ in Rare Earth pentaphosphates, Physica Status Solidi (a) 84(2), 1984, pp. K159–K163.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0097
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.