PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal model of nitride edge-emitting laser diodes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitride laser diodes (LDs), as compared with arsenide ones, are known to exhibit poor thermal properties, mostly because of a very intense heat generation within their volumes. Therefore, to enable their useful operation, they should be designed in a way enhancing efficiency of heat-flux extraction from their volumes. In the present paper, the finite-element approach has been used to compare heat-flux spreading mechanism in continuous-wave room-temperature threshold operatem nitride laser diodes with four different mounting schemes. For the standard laser width of 300 žm, the maximal active-region temperature increase over the RT ranges from 33.3 K (for the best two-sided heat LD mounting with the diamond heat spreader on the p-side) to 50.0 K (for the n-side LD mounting). As expected, laser diodes attached to their heat sinks on their p-side exhibit much more efficient heat-flux extraction than those attached on their n-type substrate. Even more efficient extraction takes place for the two-sided laser mounting. Besides, an application of the diamond heat spreader considerably enhances the above efficiency disregarding the place of its application. Further improvements may be expected in new optimised nitride laser devices designed in a way enhancing both heat-flux flow through areas of high-thermal-conductivity materials (diamond, copper, but also binary nitride compounds) and a reduction of heat-flux paths through layers of low-thermal-conductivity ternary and quaternary nitride compounds.
Czasopismo
Rocznik
Strony
663--672
Opis fizyczny
bibliogr. 26 poz.,
Twórcy
autor
  • Laboratory of Computer Physics, Institute of Physics, Technical University of Łódź, ul. Wólczańska 219, 90-924 Łódź, Poland
Bibliografia
  • [1] ASANO T., TOJYO T., MIZUNO T., TAKEYA M., IKEDA S., SHIBUYA K., HINO T., UCHIDA S., IKEDA M., 100-mW kink-free blue-violet laser diodes with low aspect ratio, IEEE Journal of Quantum Electronics 39(1), 2003, pp. 135–140.
  • [2] RYU H.Y., HA K.H., LEE S.N., JANG T., SON J.K., PAEK H.S., SUNG Y.J., KIM H.K., KIM K.S., NAM O.H., PARK Y.J., SHIM J.I., High-performance blue InGaN laser diodes with single--quantum-well active layers, IEEE Photonics Technology Letters 19(21), 2007, pp. 1717–1719.
  • [3] CHO J., CHO S., KIM B.J., CHAE S., SONE C., NAM O.H., LEE J.W., PARK Y., KIM T.I., InGaN/GaN multi-quantum well distributed Bragg reflector laser diode, Applied Physics Letters 76(12), 2000, pp. 1489–1491.
  • [4] FLORESCU D.I., ASNIN V.M., POLLAK F.H., MOLNAR R.J., WOOD C.E.C., High spatial resolution thermal conductivity and Raman spectroscopy investigation of hydride vapor phase epitaxy grown n-GaN/sapphire (0001): Doping dependence, Journal of Applied Physics 88(6), 2000, pp. 3295–3300.
  • [5] SLACK G.A., SCHOWALTER L.J., MORELLI D., FREITAS JR. J.A., Some effects of oxygen impurities on AlN and GaN, Journal of Crystal Growth 246(3–4), 2002, pp. 287–298.
  • [6] MION C., MUTH J.F., PREBLE E.A., HANSER D., Accurate dependence of gallium nitride thermal conductivity on dislocation density, Applied Physics Letters 89(9), 2006, p. 092123.
  • [7] OSHIMA Y., YOSHIDA T., ERI T., SHIBATA M., MISHIMA T., Thermal and electrical properties of high-quality freestanding GaN wafers with high carrier concentration, Physica Status Solidi (c) 4(7), 2007, pp. 2215–2218.
  • [8] SLACK G.A., TANZILLI R.A., POHL R.O., VANDERSANDE J.W., The intrinsic thermal conductivity of AlN, Journal of Physics and Chemistry of Solids 48(7), 1987, pp. 641–647.
  • [9] KATO R., MAESONO A., TYE R.P., Thermal conductivity measurement of submicron-thick films deposited on substrates by modified ac calorimetry (laser-heating Ångstrom method), International Journal of Thermophysics 22(2), 2001, pp. 617–629.
  • [10] SUN ROCK CHOI, DONGSIK KIM, SUNG-HOON CHOA, SUNG-HOON LEE AND JONG-KUK KIM, Thermal conductivity of AlN and SiC thin films, International Journal of Thermophysics 27(3), 2006, pp. 896–905.
  • [11] BONDOKOV R.T., MUELLER S.G., MORGAN K.E., SLACK G.A., SCHUJMAN S., WOOD M.C., SMART J.A., SCHOWALTER L.J., Large-area AlN substrates for electronic applications: An industrial perspective, Journal of Crystal Growth 310(17), 2008, pp. 4020–4026.
  • [12] KRUKOWSKI S., WITEK A., ADAMCZYK J., JUN J., BOCKOWSKI M., GRZEGORY I., LUCZNIK B., NOWAK G., WROBLEWSKI M., PRESZ A., GIERLOTKA S., STELMACH S., PALOSZ B., POROWSKI S., ZINN P., Thermal properties of indum nitride, Journal of Physics and Chemistry of Solids 59(3), 1998, pp. 289–295.
  • [13] PANTHA B.N., DAHAL R., LI J., LIN J.Y., JIANG H.X., POMRENKE G., Thermoelectric properties of InxGa1–xN alloys, Applied Physics Letters 92(4), 2008, p. 042112.
  • [14] DALY B.C., MARIS H.J., NURMIKKO A.V., KUBALL M., HAN J., Optical pump-and-probe measurement of the thermal conductivity of nitride thin films, Journal of Applied Physics 92(7), 2002, pp. 3820–3824.
  • [15] LIU W., BALANDIN A. A., Temperature dependence of thermal conductivity of AlxGa1–xN thin films measured by the differential 3technique, Applied Physics Letters 85(22), 2004, pp. 5230–5232.
  • [16] NAKWASKI W., Thermal conductivity of binary, ternary, and quaternary III–V compounds, Journal of Applied Physics 64(1), 1988, pp. 159–166.
  • [17] PIPREK J., Nitride Semiconductor Devices: Principles and Simulation, Wiley-VCH Verlag GmbH, Weinheim 2007, pp. 3–11.
  • [18] SKIERBISZEWSKI C., WIŚNIEWSKI P., SIEKACZ M., PERLIN P., FEDUNIEWICZ-ZMUDA A., NOWAK G., GRZEGORY I., LESZCZYŃSKI M., POROWSKI S., 60 mW continuous-wave operation of InGaN laser diodes made by plasma-assisted molecular-beam epitaxy, Applied Physics Letters 88(22), 2006, p. 221108.
  • [19] SKIERBISZEWSKI C., PERLIN P., GRZEGORY I., POROWSKI S., Continuous-wave operation of blue InGaN laser diodes made by plasma-assisted MBE, Proceedings of the 28th International Conference on the Physics of Semiconductors, July 24–28, 2006, Vienna, Austria, Springer-Verlag, pp. 1409–1410.
  • [20] SKIERBISZEWSKI C., PERLIN P., GRZEGORY I., WASILEWSKI Z. R., SIEKACZ M., FEDUNIEWICZ A., WIŚNIEWSKI P., BORYSIUK J., PRYSTAWKO P., KAMLER G., SUSKI T., POROWSKI S., High power blue--violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular beam epitaxy, Semicondor Science and Technology 20(8), 2005, pp. 809–813.
  • [21] SKIERBISZEWSKI C., WASILEWSKI Z.R., SIEKACZ M., FEDUNIEWICZ A., PERLIN P., WIŚNIEWSKI P., BORYSIUK J., GRZEGORY I., LESZCZYŃSKI M., SUSKI T., POROWSKI S., Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy, Applied Physics Letters 86(1), 2005, p. 011114.
  • [22] ŚWIETLIK T., FRANSSEN G., WIŚNIEWSKI P., KRUKOWSKI S., ŁEPKOWSKI S.P., MARONA L., LESZCZYŃSKI M., PRYSTAWKO P., GRZEGORY I., SUSKI T., POROWSKI S., PERLIN P., CZERNECKI R., BERING-STANISZEWSKA A., ELISEEV P.G., Anomalous temperature characteristics of single wide quantum well InGaN laser diode, Applied Physics Letters 88(7), 2006, p. 071121.
  • [23] WOLTER S.D., BORCA-TASCIUC D.-A., CHEN G., GOVINDARAJU N., COLLAZO R., OKUZUMI F., PRATER J.T., SITAR Z., Thermal conductivity of epitaxially textured diamond films, Diamond and Related Materials 12(1), 2003, pp. 61–64.
  • [24] ROBOGIANNAKIS P., KYRIAKIS-BITZAROS E.D., MINOGLOU K., KATSAFOUROS S., KOSTOPOULOS A., KONSTANTINIDIS G., HALKIAS G., Heterogeneous integration technique of optoelectronic dies to CMOS circuits via metallic bonding, Proceedings of the Electronics System-Integration Technology Conference, September 2006, Dresden, Germany, IEEE, pp. 328–333.
  • [25] PO HAN CHEN, CHING LIANG LIN, LIU Y.K., TE YUAN CHUNG, CHENG-YI LIU, Diamond heat spreader layer for high-power thin-GaN light-emitting diodes, IEEE Photonics Technology Letters 20(10), 2008, pp. 845–847.
  • [26] TOMM J.W., GERHARDT A., ELSAESSER T., LORENZEN D., HENNIG P., Simultaneous quantification of strain and defects in high-power diode laser devices, Applied Physics Letters 81(17), 2002, pp. 3269–3271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.