PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High temperature impedance spectroscopy study of non-stoichiometric bismuth zinc niobate pyrochlore

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Single phase non-stoichiometric bismuth zinc niobate, Bi3Zn1.84Nb3O13.84 was prepared by a conventional solid state method. The sample was refined and fully indexed on the cubic system, space group Fd3m, Z = 4 with a = 10.5579(4) A. Electrical characterisation was performed using an ac impedance analyser over the temperature range of 25-850 °C and frequency range of 5 Hz - 3 MHz. Typical dielectric response was observed in Bi3Zn1.84Nb3O13.84with high relative permittivity, low dielectric loss and negative temperature coefficient of capacitance, with the values of 147, 0.002 and -396 ppm/°C, at 100 kHz at ambient temperature, respectively. The material is highly resistive, with the conductivity of 10-21 ohm-1ocm-1 and a high activation energy of 1.59 eV.
Wydawca
Rocznik
Strony
947--959
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
autor
autor
autor
autor
autor
  • Faculty of Science Universiti Putra Malaysia 43400 Serdang, Selangor Malaysia
Bibliografia
  • [1] HEYWANG W., THOMANN H., Positive Temperature Coefficient Resistors, [In:] B.C.H Steele (Ed.), Electronic Ceramics, Elsevier, London, 1991, p. 29.
  • [2] RAO C.N.R., GOPALAKRISHNAN J., New Direction in Solid State Chemistry, 2nd Ed., Cambridge University Press, Cambridge, 1997.
  • [3] MUKTHA B., DARRIET J., GIRIDHAR MADRAS., GURU ROW T.N., J. Solid State Chem., 179 (2006), 3919.
  • [4] SEGAL D.L., Powders for Electronic, [In:] B.C.H. Steele (Ed.), Electronic Ceramics, Elsevier, London, 1991, p. 185.
  • [5] CANN D.P., RANDALL C.A., SHROUT T.R., Solid State Commun., 100 (1996), 529.
  • [6] ZHOU W., J. Solid State Chem., 101 (1992), 1.
  • [7] SUBRAMANIAM M.A., ARAVAMUDAN G., SUBBA RAO G.V., Progr. Solid State Chem., 15 (1983), 55.
  • [8] VALANT M., SUROROV J. Am. Ceram. Soc., 88 (2005), 2540.
  • [9] NINO J.C., LANAGAN M.T., RANDALL C.A., J. Mater. Res., 16 (2001), 1460.
  • [10] WITHERS R.L., WELBERRY T.R., LARSSON A-K., LIU Y., NOREN L., RUNDLOF H., BRINK F.J., J. Solid State Chem., 177 (2004), 231.
  • [11] TAN K.B., LEE C.K., ZAINAL Z., MILES G.C., WEST A.R., J. Mater. Chem., 15 (2005), 3501.
  • [12] VANDERAH T.A., LEVIN I., LUFASO M.W., Eur. J. Inorg. Chem., (2005), 2895.
  • [13] LEVIN I., AMOS T.G., VANDERAH T.A., RANDALL C.A., LANAGAN M.T., J. Solid State Chem., 168 (2002), 69.
  • [14] NOBRE M.A.L., LANFREDI S., Mater. Lett., 47 (2001), 362.
  • [15] NOBRE M.A.L., LANFREDI S., Appl. Phys. Lett., 81 (2002), 451.
  • [16] HERBERT J.M., Ceramics Dielectrics and Capacitors, [In:] D.S. Campbell (Ed.), The Properties of Dielectrics, Gordon and Breach Science Publishers, Amsterdam, 1985, p. 9.
  • [17] DU H.L., YAO X., WANG H., Ferroelectrics, 262 (2001), 89.
  • [18] RANDALL C.A., NINO J.C., BAKER A., YOUN H-J., HITOMI A., THAYER R., EDGE L.E., SOGABE T., ANDERSON T.D., SHROUT T.R., TROLIER-MCKINSTRY S., LANAGAN M.T., Am. Ceram. Soc. Bull., (2003), 9101.
  • [19] CLAYTON J., TAKAMURA H., METZ R., TULLER H.L., WUENSCH B.J., J. Electroceramics, 7 (2001), 113.
  • [20] KAMBA S., POROKHONSKY V., PASHKIN A., BOVTUN V., PETZELT J. Phys. Rev. B., 66 (2002), 054106.
  • [21] NINO J.C., LANAGAN M.T., RANDALL C.A., J. Applied. Phys., 89 (2001), 4512.
  • [22] WANG X.L., WANG H., YAO X., J. Am. Ceram. Soc., 80 (1997), 2745.
  • [23] YOUN H.J., SOGABE T., RANDALL C.A., SHROUT T.P., LANAGAN M.T., J. Am. Ceram. Soc., 84 (2001), 2557.
  • [24] DU H.L., YAO X., Mater. Electr., 15 (2004), 13.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0012-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.