PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasicrystalline phase formation in the conventionally solidified Al-Cu-Fe system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Structural characteristics and thermal behaviour of the conventionally solidified Al-Cu-Fe alloys with nominal compositions of Al70Cu20Fe10, Al65Cu20Fe15 and Al63Cu25Fe12 were investigated by X-ray diffraction, scanning electron microscopy, and differential thermal analysis techniques. Results show that a single quasicrystalline phase forms in a conventionally solidified Al65Cu20Fe15 alloy, being thermodynamically stable without phase transition up to the melting point. A cubic AlFe(Cu) solid solution, identified as ß phase, and a cubic AlCu(Fe) solid solution, identified as ? phase, were observed with quasicrystalline phase for Al63Cu25Fe12 alloy. Conventional solidification of Al70Cu20Fe10 alloy does not result in quasicrystalline phase formation. However, the formation of quasicrystalline phase in conventionally solidified Al70Cu20Fe10 alloy was observed after additional annealing at elevated temperature. SEM micrographs for Al70Cu20Fe10 and Al63Cu25Fe12 alloys after annealing at 700 °C for 4 h revealed the formation of pentagonal dodecahedrons in the quasicrystalline phase, with an edge size of about 30 žm.
Wydawca
Rocznik
Strony
919--926
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • Department of Physics, Faculty of Art and Science, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey
Bibliografia
  • [1] KOSTER U., LIU W., HERTZBERG H.,, MICHEL M., J. Non-Cryst. Solids,153/154 (1993), 446.
  • [2] WOLF B., BAMBAUER K.O., PAUFLER P., Mater. Sci. Eng. A, 298 (2001), 284.
  • [3] HUTTUNEN-SAARIVIRTA E., J. Alloys Compds. 363 (2004), 150.
  • [4] RAPP O., Mater. Sci. Eng. A, 294–296 (2000), 458.
  • [5] DUBOIS J.M., Mater. Sci. Eng. A, 294–296 (2000), 4.
  • [6] BRUNET P., ZHANG L.M., SORDELET D.J., BESSER M., DUBOIS J.M., Mater. Sci. Eng. A, 294–296 (2000), 74.
  • [7] CHANG S.L., CHIN W.B., ZHANG C.M., JENKS C.J., THIEL P.A., Surf. Sci., 337 (1995), 135.
  • [8] HOMES C.C., TIMUSK T., WU X., ALTOUNIAN Z., SAHNOUNE A., STROM-OSLEN J.O., Phys. Rev. Lett., 13 (1991), 2694.
  • [9] EISENHAMMER T., MAHR A., HAUGENEDER A., ASSMANN W., Sol. Energy Mater. Sol. Cells, 46 (1997), 53.
  • [10] TSAI A.P., INOUE A., MASUMOTO T., Japan. J. Appl. Phys., 26 (1987), L1505.
  • [11] BOJARSKI Z., BOGDANOWICZ W., Arch. Nauk. Mater., 19 (1998), 215.
  • [12] BOJARSKI Z., BOGDANOWICZ W., GIGLA M., LELATKO J., SUROWIEC M., Arch. Nauk. Mater., 18 (1997), 237.
  • [13] BOGDANOWICZ W., J. Cryst. Growth, 240 (2002), 255.
  • [14] BOGDANOWICZ W., Mater. Sci. Eng. A, 346 (2003), 328.
  • [15] LEE S.M., KIM B.H., KIM S.H., FLEURY E., KIM W.T., KIM D.H., Mater. Sci. Eng. A, 294–296 (2000), 93.
  • [16] CHEUNG Y.L, CHAN K.C., ZHU Y.H., Mater. Charact., 47 (2001), 299.
  • [17] ROSAS G., REYES-GASGA J., PEREZ R., Mater. Charact., 58 (2007), 765.
  • [18] KIM B.H., KIM S.H., KIM W.T., KIM D.H., Phil. Mag. Lett., 81 (2001), 483.
  • [19] LEE S.M., KIM W.T., KIM D.H., Mater. Sci. Eng. A, 294–296 (2000), 99.
  • [20] LEE S.M., JEON H.J., KIM B.H., KIM W.T., KIM D.H., Mater. Sci. Eng. A, 304–306 (2001), 871.
  • [21] HOLLAND-MORITZ D.,SCHROERS J., GRUSHKO B., HERLACH D.M.,, URBAN K., Mater. Sci. Eng. A, 226–228 (1997), 976.
  • [22] FAUDOT F., QUIVY A., CALVAYRAC Y., GRATIAS D., HARMELIN M., Mater. Sci. Eng. A 133 (1991), 383.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.