PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of charge carrier transport in conjugated polymers doped by polar additives

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical model of the inter-chain charge carrier transport in poly[2-methoxy-5-(2´-ethylhexyloxy)- p-phenylene vinylene] doped with a photochromic polar additive is put forward. The model attributes to each polymer chain a set of charge states, in which charge carriers thermalize. These on-chain states are calculated by solving the Schrodinger equation with a tight binding Hamiltonian. The interchain transfer rates are determined using the Marcus formula. The model describes the effect of polar additives on charge carrier transport. The presence of the additives results in a decrease of charge mobility, because of the increase of the local energy disorder. A decrease of the inter-chain mobility by up to several orders of magnitude is found if the width of the local energy disorder is doubled. This finding confirms the possibility of constructing an optoelectrical switch based on a polymer doped with a photochromic polar additive.
Wydawca
Rocznik
Strony
797--812
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
Bibliografia
  • [1] BÄSSLER H., Phys. Stat. Sol. (b), 175 (1993), 15.
  • [2] MILLER A., ABRAHAMS E., Phys. Rev., 120 (1960), 745.
  • [3] FISHCHUK I.I., KADASHCHUK A., BÄSSLER H., NEŠPŮREK S., Phys. Rev. B, 67 (2003), 224303.
  • [4] FISHCHUK I.I., ARKHIPOV V.I., KADASHCHUK A., HEREMANS P., BÄSSLER H., Phys. Rev. B, 76 (2007), 045210.
  • [5] MARCUS R.A., Rev. Mod. Phys., 65 (1993), 599.
  • [6] MAY V., KÜHN O., Charge and Energy Transfer Dynamics in Molecular Systems, Wiley, Berlin, 2000.
  • [7] TOMAN P., NEŠPŮREK S., WEITER M., VALA M., SWORAKOWSKI J., BARTKOWIAK W., MENŠÍK M., Polym. Adv. Technol.,17 (2006), 673.
  • [8] BROO A., Int. J. Quant. Chem., 77 (2000), 454.
  • [9] GROZEMA F.C., VAN DUIJNEN P.T., BERLIN Y.A., RATNER M.A., SIEBBELES L.D.A., J. Phys. Chem. B, 106 (2002), 7791.
  • [10] TOMAN P., BARTKOWIAK W., NEŠPŮREK S., SWORAKOWSKI J., ZALEŚNY R., Chem. Phys., 316 (2005), 267.
  • [11] CHUA L.L., ZAUMSEIL J., CHANG J.F., OU E.C.W., HO P.K.H., SIRRINGHAUS H., FRIEND R.H., Nature, 434 (2005), 194.
  • [12] TAVERNIER H.L., FAYER M.D., J. Chem. Phys., 114 (2001), 4552.
  • [13] HUTCHISON G.R., RATNER M.A., MARKS T.J., J. Am. Chem. Soc., 127 (2005), 2339.
  • [14] PRINS P., SENTHILKUMAR K., GROZEMA F.C., JONKHEIJM P., SCHENNING A.P.H.J., MEIJER E.W., SIEBBELES L.D.A., J. Phys. Chem. B, 109 (2005), 18267.
  • [15] KUBO R., J. Phys. Soc. Japan, 12 (1957), 570.
  • [16] HILT O., SIEBBELES L.D.A., Chem. Phys. Lett., 269 (1997), 257.
  • [17] BÖTTCHER C.J.F., Theory of Electric Polarization, Elsevier, Amsterdam, 1952.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0135
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.