PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Electrical conductivity in thin films fabricated from nanoparticles of a polymeric composite based on PEDOT

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comparative study of electrical properties of films fabricated from a series of polymeric core shell particles and microgels is presented. The core shell particles consist of spherical polystyrene core covered by electrically conductive poly[3,4-(ethylenedioxy)thiophene] (PEDOT). Microgels are composed of PEDOT grains embedded into crosslinked, electrically insulating polymer bodies. The electrical resistivity of the films changes from 12 G?ˇcm to 100 ?ˇcm; the value depends on the thickness of the shell cover and the type of oxidant used for PEDOT polymerization. Electrical conductivity in the films of core shell particles is thermally activated and obeys the inverse Meyer-Neldel rule, which indicates that the electrical conductivity is governed by a common transport mechanism. Electrical conductivity depends, among others, on the humidity in the surrounding environment. In films consisting of particles with a high PEDOT content (and thus high conductivity) the resistivity increases as the humidity increases. Conversely, when the films are formed from particles having a low PEDOT content, the humidity has a reverse effect. An explanation for this behaviour is proposed. The frequency dependences of ac conductivities of high conductivity "core shell" and "microgel" films suggest existence of hopping charge carrier transport mechanism for large humidity scale.
Wydawca
Rocznik
Strony
769--780
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v. v. i., 162 06 Prague, Czech Republic
Bibliografia
  • [1] SHIRAKAWA H., Angew. Chem., 113 (2001), 2642.
  • [2] MACDIARMID A.G., Angew. Chem., 113 (2001), 2649.
  • [3] HEEGER A.J., Angew. Chem., 113 (2001), 2660.
  • [4] WEI Z., XU J., HOU J., ZHOU W., PU S., J. Mater. Sci., 41 (2006), 3923.
  • [5] OUYANG J., CHU C.-W., CHEN F.-C., XU Q., YANG Y., Adv. Funct. Mater., 15 (2005), 203.
  • [6] ERDEN A., SAHIN E., GÜLLÜ M., TOPPARE L., Eur. Polym. J., 42 (2006), 1866.
  • [7] HENDERSON J.A.M., SAUNDERS J.M., MRKIC J., KENT P., GORE J., SAUNDERS B.R., J. Mater. Chem., 11 (2001), 3037.
  • [8] HAIN J., PICH A., ADLER H.-J., RAIS D., NEŠPŮREK S., Macromol. Symp., 288 (2008), 61.
  • [9] MEYER W., NELDEL H., Z. Tech. Phys., 18 (1937), 588.
  • [10] RAM S.K., KUMAR S., ROCA I CABARROCAS P., J. Non-Cryst. Solids, 354 (2008), 2263.
  • [11] ABTEW T.A., ZHANG M., PAN Y., DRABOLD D.A., J. Non-Cryst. Solids, 354 (2008), 2909.
  • [12] MEIJER E.J., MATTERS M., HERWIG P.T., DE LEEUW D.M., KLAPWIJK T.M., Appl. Phys. Lett., 76 (2000), 3433.
  • [13] LUCOVSKY G., OVERHOF H., J. Non-Cryst. Solids, 164–166 (1993), 973.
  • [14] WIDENHORN R., REST A., BODEGOM E., J. Appl. Phys., 91 (2002), 6524.
  • [15] BOYKO V., LU Y., RICHTER S., ARNDT K.-F., PICH A., ADLER H.-J., Polymer, 44 (2003), 7821.
  • [16] JONSCHER A.K., Dielectric Relaxation in Solids, Chelsea Dielectric Press, London, 1983.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0133
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.