PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dielectric relaxation and ac conductivity of WO3 added (Na1/2Bi1/2)TiO3 ceramic

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ceramic samples of WO3 added (Na1/2Bi1/2)TiO3 were prepared using a high-temperature solid-state reaction method. X-ray diffraction analyses indicate the formation of a single-phase orthorhombic structure. The apparent particle size and lattice strain are estimated using the Williamson-Hall plot. Dielectric studies revealed the relaxor behaviour and addition of WO3 shifted phase transition temperature as well as depolarization temperature of (Na1/2Bi1/2)TiO3 to higher side. ac impedance plots were used to analyse the electrical behaviour of samples in function of frequency at various temperatures. The ac impedance studies revealed the presence of the grain boundary effect and evidence of a negative temperature coefficient of resistance. Cole-Cole analysis indicated a non-Debye type dielectric relaxation. The ac conductivity obeys the universal power law. The pair approximation type correlated barrier hopping model explains the universal behaviour of the s exponent. The apparent activation energy of the conduction process and density of states at the Fermi level have been discussed.
Wydawca
Rocznik
Strony
373--384
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
autor
autor
autor
  • Materials Research Laboratory, University Department of Physics, T. M. Bhagalpur University, Bhagalpur 812 007, India
Bibliografia
  • [1] GOMAH-PETTRY J.R., SAÏD S., MARCHET P., MERCURIO J.P., J. Eur. Ceram. Soc., 24 (2004), 1165.
  • [2] XU Q., CHEN S., CHEN W., WU S., ZHOU J., SUN H., LI Y., Mater. Chem. Phys., 90 (2005), 111.
  • [3] BUHRER C.F., J. Chem. Phys., 36 (1962), 798.
  • [4] SUCHANICZ J., ROLEDER K., KANIA A., HANDEREK J., Ferroelectrics, 77 (1988), 107.
  • [5] ROHLEDER K., SUCHANICZ J., KANIA A., Ferroelectrics, 89 (1989), 1.
  • [6] HOSONO Y., HARADA K., YAMASHITA Y., Jpn. J. Appl. Phys., 40 (2001), 5722.
  • [7] SUCHANICZ J., KUSZ J., BHÖM H., DUDA H., MERCURIO J.P., KONIECZNY K., J. Eur. Ceram. Soc., 23 (2003), 1559.
  • [8] TAKEDA H., AOTO W., SHIOSAKI T., Appl. Phys. Lett., 87 (2005), 102104.
  • [9] WANG X.X., TANG X.G., CHAN H.L.W., Appl. Phys. Lett., 85 (2004), 91.
  • [10] PENG C., LI J-F., GONG W., Mater. Lett., 59 (2005), 1576.
  • [11] CHU B.J., CHEN D.R., LI G.R., YIN Q.R., J. Eur. Ceram. Soc., 22 (2002), 2115.
  • [12] GUO Y., KAKIMOTO KEN-ICHI, OHSATO H., Solid State Commun., 129 (2004), 279.
  • [13] LI Y.M., CHEN W., ZHOU J., XU Q., GU X.Y., LIAO R.H., Physica B, 365 (2005), 76.
  • [14] NAGATA H., TAKENAKA T., J. Eur. Ceram. Soc. 21 (2001), 1299.
  • [15] HERABUT A., SAFARI A., J. Amer. Ceram. Soc. 80 (1997), 2954.
  • [16] WANG X.X., CHAN H.L.W., CHOY C.L., Appl. Phys. A 80 (2005), 333.
  • [17] LI Y., CHEN W., XU Q., ZHOU J., WANG Y., SUN H., Ceram. Int., 33 (2007), 95.
  • [18] TAKENAKA T., NAGATA H., Jpn. J. Appl. Phys., 30 (1991), 2236.
  • [19] GUO Y., KAKIMOTO K-I., OHSATO H., Mater. Lett., 59 (2005), 241.
  • [20] LILY, KUMARI K., PRASAD K., CHOUDHARY R.N.P., J. Alloys Comp., 453 (2008), 325.
  • [21] ZHAO S., LI G., DING A., WANG T., YIN Q., J. Phys. D: Appl. Phys., 39 (2006), 2277.
  • [22] UEDA I., Jpn. J. Appl. Phys., 11 (1972), 450.
  • [23] ZHONG N., DONG X., SUN D., DU H., YANG H., Mater. Sci. Eng. B, 106 (2004), 263.
  • [24] PRASAD K., KUMARI K., LILY, CHANDRA K.P., YADAV K.L., SEN S., Solid State Commun., 144 (2007), 42.
  • [25] PowdMult, An interactive powder diffraction data interpretation and indexing program, ver. 2.1, School of Physical Science, Flinders University of South Australia, Bedford Park, S. A. 5042, Australia.
  • [26] SURYANARAYANA C., GRANT NORTON M., X-Ray Diffraction A Practical Approach, Plenum Press, New York, 1998.
  • [27] Impedance Spectroscopy Emphasizing Solid Materials and Systems, J.R. Macdonald (Ed.), Wiley, New York, 1987.
  • [28] BONNEAU P., GARNIER O., CALVARIN G., HUSSON E., GAVARRI J.R., HEWAT A.W., MORREL A., J. Solid State Chem., 91 (1991), 350.
  • [29] LILY, KUMARI K., PRASAD K., YADAV K.L., J. Mater. Sci., 42 (2007), 6252.
  • [30] PRASAD K., LILY, KUMARI K., CHANDRA K.P., YADAV K.L., SEN S., Appl. Phys. A., 88 (2007), 377.
  • [31] MOTT N.F., DAVIS E.A., Electronic Processes in Non-Crystalline Materials, Oxford University Press, London, 1979.
  • [32] FUNKE K., Prog. Solid State Chem., 22 (1993), 111.
  • [33] JONSCHER A.K., Nature, 267 (1977), 673.
  • [34] ELLIOTT S.R., Philos. Mag. B, 37 (1978), 553.
  • [35] PRASAD K., KUMARI K., LILY, CHANDRA K.P., YADAV K.L., SEN S., Adv. Appl. Ceram., 106 (2007), 241.
  • [36] SHARMA G.D., ROY M., ROY M.S., Mater. Sci. Eng. B, 104 (2003), 15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0093
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.