PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Construction of the master sintering curve for submicron size A-Al2O3 based on non-isothermal sintering containing lower heating rates only

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The master sintering curve (MSC) is quite useful for analyzing the shrinkage behaviour of ceramics. In this study, the shrinkage behaviour for ?-Al2O3 with a mean particle size of 350 nm during constantheating- rate sintering were evaluated based on the MSC theory. An MSC for the above powder has been constructed using dilatometry data containing heating rates lower than 5 °C/min only with the help of combined-stage sintering model. The validity of the MSC has been verified by a few experimental runs. A comparison between predicted and experimental shrinkage curves showed good consistency, thus confirming that it is possible to control shrinkage behaviour using the MSC. The concept of the MSC has been used to evaluate the apparent activation energy for the above powder, and a high value of 1035 kJ/mol was obtained.
Wydawca
Rocznik
Strony
97--107
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
autor
autor
autor
  • College of Physics Science, Qingdao University, Qingdao 266071, P. R. China
Bibliografia
  • [1] RAHAMAN M.N., JONGHE L.C., BROOK R.J., J. Am. Ceram. Soc., 69 (1986), 53.
  • [2] KUCZYNSKI G.C., Trans. Am. Inst. Mining. Met. Eng., 185 (1949), 169.
  • [3] COBLE R.L., J. Appl. Phys., 2 (1961), 787.
  • [4] HANSEN J.D., RUSIN R.P., TENG M.H., JOHNSON D.L., J. Am. Ceram. Soc., 75 (1992), 1129.
  • [5] SU H., JOHNSON D.L., J. Am. Ceram. Soc., 79 (1996), 3211.
  • [6] DIANTONIO C.B., EWSUK K.G., Ceram. Trans., 157 (2005), 15.
  • [7] JOHNSON D.L., Ceram. Trans., 157 (2005), 3.
  • [8] LI D., CHEN S., JING Y., SHAO W., ZHANG Y., LUAN W., Sci. Sinter., 39 (2007), 103.
  • [9] EWSUK K.G., ELLERBY D.T., DIANTONIO C.B., J. Am. Ceram. Soc., 89 (2006), 2003.
  • [10] NIKOLIC M.V., PAVLOVIC V.P., LABUS N., STOJANOVIC B., Mater. Sci. Foru., 494 (2005), 417.
  • [11] TATAMI J., SUZUKI Y., WAKIHARA T., MEGURO T., KOMEYA K., Key Eng. Mater., 317–318 (2006), 11.
  • [12] WANG J.D., RAJ R., J. Am. Ceram. Soc., 73 (1990), 1172.
  • [13] XIONG X.D., Rare. Metal. Mater. Eng., 28 (1999), 298.
  • [14] KUTTY T.R., HEGDE P.V., KHAN K.B., PILLAI S.N., SENGUPTA A.K., JAIN G.C., MAJUMDAR S., KAMATH H.S., PURUSHOTHAM D.S., J. Nucl. Mater., 305 (2002), 159.
  • [15] JOHNSON D.L., SU H., Ceram. Bull., 76 (1997), 72.
  • [16] DOSDALE T., BROOK R., J. Am. Ceram. Soc., 66 (1983), 392.
  • [17] HODGE D., J. Am. Ceram. Soc., 66 (1983), 216.
  • [18] FANG T.T., SHIVE J.T., SHIAU F.S., J. Mater. Chem. Phys., 80 (2003), 108.
  • [19] GERMAN R. M., Sintering Theory and Practice, MPIF, Princeton, 1997.
  • [20] SOHN D., Cement. Concr. Res., 29 (1999), 241.
  • [21] JOHNSON D.L., HOST J.J., TENG M.H., ELLIOTT B.R., HWANG J.H., MASON T.O., WEERTMAN J.R., DRAVID V.P., J. Mater. Res., 12 (1997), 1268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.