PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-dimensional numerical analysis on mid-infrared emission from IV-VI lead salt photonic crystal microcavity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An optimal design of two dimensional (2D) hexagonal photonic bandgap (PBG) resonating micro-optical defect cavity on IV-VI lead salt material has been carried out. The nature of both the transverse electric (TE) and transverse magnetic (TM) band structure for the electromagnetic waves in the periodic triangular lattice pattern is formulated by the well-established plane wave expansion (PWE) method. The defect cavity is engineered to resonate at ~4.17 žm in TM bandgap. The field distribution in the defect cavity has been analyzed based on two very efficient and popular schemes - perturbation correction finite difference (FD) method and finite difference time domain (FDTD) mechanism which is truncated by uniaxial perfectly matched layer (UPML) absorbing boundary condition (ABC). FD method efficiently solves Helmholtz equations to evaluate the field distribution in the semiconducting waveguide for any single spectral wavelength. The numerical results by FD method are re-established by the FDTD scheme that incorporates a precise numerical analysis within a specified wavelength range.
Czasopismo
Rocznik
Strony
499--509
Opis fizyczny
bibliogr.32 poz.,
Twórcy
autor
autor
autor
autor
  • School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma-73019, USA
Bibliografia
  • [1] FINDLAY P.C., PIDGEON C.R., KOTITSCHKE R., HOLLINGWORTH A., MURDIN B.N., LANGERAK C.J.G.M., VAN DER MEER A.F.G., CIESLA C.M., OSWALD J., HOMER A., SPRINGHOLZ G., BAUER G., Auger recombination dynamics of lead salts under picosecond free-electron-laser excitation, Physical Review B 58(19), 1998, pp. 12908–12915.
  • [2] FEIT Z., MCDONALD M., WOODS R.J., ARCHAMBAULT V., MAK P., Low threshold PbEuSeTe/PbTe separate confinement buried heterostructures diode lasers, Applied Physics Letters 68(6), 1996, pp. 738–740.
  • [3] EVANS A., YU J.S., SLIVKEN S., RAZEGHI M., Continuous-wave operation of ~ 4.8 m quantum--cascade lasers at room temperature, Applied Physics Letters 85(12), 2004, pp. 2166–2168.
  • [4] BEWLEY W.W., VURGAFTMAN I., KIM C.S., KIM M., CANEDY C.L., MEYER J.R., BRUNO J.D., TOWNER F.J., Room-temperature “W” diode lasers emitting at ≈4.0 m, Applied Physics Letters 85(23), 2004, pp. 5544–5546.
  • [5] PARTIN D.L., Lead salt quantum effect structures, IEEE Journal of Quantum Electronics 24(8), 1988, pp. 1716–1726.
  • [6] SHI Z., XU G., MCCANN P.J., FANG X.M., DAI N., FELIX C.L., BEWLEY W.W., VURGAFTMAN I., MEYER J.R., IV–VI compound midinfrared high-reflectivity mirrors and vertical-cavity surface-emitting lasers grown by molecular-beam epitaxy, Applied Physics Letters 76(25), 2000, pp. 3688–3690.
  • [7] SHI Z., LV X., ZHAO F., MAJUMDAR A., RAY D., SINGH R., YAN X.J., [110] orientated lead salt midinfrared lasers, Applied Physics Letters 85(15), 2004, pp. 2999–3001.
  • [8] HOLLOWAY H., Quantum efficiencies of thin-film IV–VI semiconductor photodiodes, Journal of Applied Physics 50(3), 1979, pp. 1386–1398.
  • [9] LOCKWOOD A.H., BALON J.R., CHIA P.S., RENDA F.J., Two-color detector arrays by PbTe/ Pb0.8Sn0.2Te liquid phase epitaxy, Infrared Physics 16(5), 1976, pp. 509–514.
  • [10] XIAOLIANG LU, ZHISHENG SHI, Theoretical investigations of [110] IV–VI lead salt edge-emitting lasers, IEEE Journal of Quantum Electronics 41(3), 2005, pp. 308–315.
  • [11] MUKHERJEE S., LI D., RAY D., ZHAO F., ELIZONDO S.L., JAIN S., MA J., SHI Z., Fabrication of an electrically pumped lead-chalcogenide midinfrared laser on a [110] oriented PbSnSe substrate, IEEE Photonics Technology Letters 20(8), 2008, pp. 629–631.
  • [12] JOANNOPOULOS J.D., MEADE R.D., WINN J.N., Photonic Crystals, Modeling the Flow of Light, Princeton University Press, Princeton, N.J., 1995.
  • [13] JOANNOPOULOS J. D., VILLENEUVE P. R., FAN S., Photonic crystals: putting a new twist on light, Nature 386(6621), 1997, pp. 143–149.
  • [14] KRAUSS T., SONG Y.P., THOMS S., WILKINSON C.D.W., DELARUE R.M., Fabrication of 2-D photonic bandgap structures in GaAs/AlGaAs, Electronics Letters 30(17), 1994, pp. 1444–1446.
  • [15] KRAUSS T.F., DE LA RUE R.M., BRAND S., Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths, Nature 383(6602), 1996, pp. 699–702.
  • [16] O’BRIEN J., PAINTER O., LEE R., CHENG C.C., YARIV A., SCHERER A., Lasers incorporating 2D photonic bandgap mirrors, Electronics Letters 32(24), 1996, pp. 2243–2244.
  • [17] BABA T., MATSUZAKI T., Fabrication and photoluminescence of GaInAsP/InP 2-dimensional photonic crystals, Japanese Journal of Applied Physics, Part 1 35(2B), 1996, pp. 1348–1352.
  • [18] HAMANO T., HIRAYAMA H., AOYYAGI Y., Optical characterization of GaAs 2D photonic bandgap crystal fabricated by selective MOVPE, [In] Conference on Lasers and Electro-Optics, Vol. 11 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C.), 1997, pp. 528–529.
  • [19] PLIHAL M., MARADUDIN A.A., Photonic band structure of two-dimensional systems: the triangular lattice, Physical Review B 44(16), 1991, pp. 8565–8571.
  • [20] STERN M.S., Rayleigh quotient solution of semivectorial field problems for optical waveguides with arbitrary index profiles, IEE Proceedings, Part J, Optoelectronics 138(3), 1991, pp. 185–190.
  • [21] BENSON T.M., KENDALL P.C., STERN M.S., QUINNEY D.A., New results for waveguide propagation constants, IEE Proceedings, Part J, Optoelectronics 136(2), 1989, pp. 97–102.
  • [22] STERN M.S., Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles, IEE Proceedings, Part J, Optoelectronics 135(1), 1988, pp. 56–63.
  • [23] GONTHIER F., LACROIX S., BURES J., Numerical calculations of modes of optical waveguides with two-dimensional refractive index profiles by a field correction method, Optical and Quantum Electronics 26(3), 1994, pp. S135–S149.
  • [24] KUMAR A., VARSHNEY R.K., Propagation characteristics of highly elliptical core optical waveguides: a perturbation approach, Optical and Quantum Electronics 16(4), 1984, pp. 349–354.
  • [25] KUMAR A., THYAGARAJAN K., GHATAK A.K., Analysis of rectangular-core dielectric waveguides:an accurate perturbation approach, Optics Letters 8(1), 1983, pp. 63–65.
  • [26] BERENGER J.P., A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 114(2), 1994, pp. 185–200.
  • [27] KATZ D.S., THIELE E.T., TAFLOVE A., Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave and Guided Wave Letters 4(8), 1994, pp. 268–270.
  • [28] BERENGER J.P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics 127(2), 1996, pp. 363–379.
  • [29] PAINTER O., VUCKOVIC J., SCHERER A., Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab, Journal of the Optical Society of America B 16(2), 1999, pp. 275–285.
  • [30] CHAUDHURI P.R., GHATAK A.K., PAL B.P., LU C., Fast convergence and higher-order mode calculation of optical waveguides: perturbation method with finite difference algorithm, Optics and Laser Technology 37(1), 2005, pp. 61–67.
  • [31] KANE YEE, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation 14(3), 1966, pp. 302–307.
  • [32] TAFLOVE A., BRODWIN M.E., Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations, IEEE Transactions on Microwave Theory and Techniques 23(8), 1975, pp. 623–630.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.