PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Coherence characterization of partially coherent flat-topped beam propagating through atmospheric turbulence

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the change in the degree of coherence of a partially coherent flat-topped (PCFT) beam propagating through atmospheric turbulence. It is shown analytically that with a fixed set of source parameters and under a particular atmospheric turbulence model, a PCFT beam propagating through atmospheric turbulence reaches its maximum value of coherence after propagating a particular distance, and the effective width of the spectral degree of coherence also has its maximum value. This phenomenon is independent of the turbulence model used. We also study the effects of beam width values, the structure constant of turbulent media and the degree of coherence on effective width of spectral degree of coherence. The results are illustrated by numerically calculated curves.
Czasopismo
Rocznik
Strony
429--440
Opis fizyczny
bibliogr. 22 poz.,
Twórcy
autor
  • Photonics Laboratory, Physics Department, Iran University of Science and Technology, Tehran, Iran
Bibliografia
  • [1] SHIRAI T., WOLF E., Spatial coherence properties of the far field of a class of partially coherent beams which have the same directionality as a fully coherent laser beam, Optics Communications 204(1–6), 2002, pp. 25–31.
  • [2] COLLETT E., WOLF E., Is complete spatial coherence necessary for the generation of highly directional light beams?, Optics Letters 2(2), 1978, pp. 27–29.
  • [3] WOLF E., COLLETT E., Partially coherent sources which produce the same far-field intensity distribution as a laser, Optics Communications 25(3), 1978, pp. 293–296.
  • [4] COLLETT E., WOLF E., New equivalence theorems for planar sources that generate the same distributions of radiant intensity, Journal of the Optical Society of America 69(7), 1979, pp. 942–950.
  • [5] DE SANTIS P., GORI F., GUATTARI G., PALMA C., An example of a Collett–Wolf source, Optics Communications 29(3), 1979, pp. 256–260.
  • [6] FARINA J.D., NARDUCCI L.M., COLLETT E., Generation of highly directional beams from a globally incoherent source, Optics Communications 32(2), 1980, pp. 203–208.
  • [7] SALEM M., SHIRAI T., DOGARIU A., WOLF E., Long-distance propagation of partially coherent beams through atmospheric turbulence, Optics Communications 216(4–6), 2003, pp. 261–265.
  • [8] KASHANI F.D., ALAVINEJAD M., GHAFARY S., Propagation properties of a non-circular partially coherent flat-topped beam in turbulent atmosphere, Optics and Laser Technology 41(5), 2009, pp. 659–664.
  • [9] ALAVINEJAD M., GHAFARY B., Turbulence-induced degradation properties of partially coherent flat-topped beams, Optics and Lasers in Engineering 46(5), 2008, pp. 357–362.
  • [10] WU JIAN, Propagation of Gaussian–Shell beam through turbulent media, Journal of Modern Optics 37(4), 1990, pp. 671–684.
  • [11] WOLF E., Correlation-induced changes in the degree of polarization, the degree of coherence, and the spectrum of random electromagnetic beams on propagation, Optics Letters 28(13), 2003, pp. 1078–1080.
  • [12] MANDEL L., WOLF E., Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.
  • [13] LU W., LIU L., SUN J., YANG Q., ZHU Y., Change in degree of coherence of partially coherent electromagnetic beams propagating through atmospheric turbulence, Optics Communications 271(1), 2007, pp. 1–8.
  • [14] ROYCHOWDHURY H., PONOMARENKO S.A., WOLF E., Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere, Journal of Modern Optics 52(11), 2005, pp. 1611–1618.
  • [15] RICKLIN J.C., DAVIDSON F.M., Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication, Journal of the Optical Society of America A 19(9), 1794–1802.
  • [16] KOROTKOVA O., ANDREWS L.C., PHILIPS R.L., Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom, Optical Engineering 43(2), 2004, pp. 330–341.
  • [17] ANDREWS L.C., PHILIPS R.L., Laser Beam Propagation through Random Media, SPIE Optical Engineering Press, Bellingham, WA, 1998.
  • [18] WOLF E., Unified theory of coherence and polarization of random electromagnetic beams, Physics Letters A 312(5–6), 2003, pp. 263–267.
  • [19] KOROTKOVA O., SALEM M., WOLF E., The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence, Optics Communications 233(4–6), 2004, pp. 225–230.
  • [20] ROYCHOWDHURY H., KOROTKOVA O., Realizability conditions for electromagnetic Gaussian Schell model sources, Optics Communications 249(4–6), 2005, pp. 379–385.
  • [21] KOROTKOVA O., SALEM M., WOLF E., Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source, Optics Letters 29(11), 2004, pp. 1173–1175.
  • [22] GORI F., SANTARSIERO M., PIQUERO G., BORGHI R., MONDELLO A., SIMON R., Partially polarized Gaussian Schell-model beams, Journal of Optics A: Pure and Applied Optics 3(1), 2001, pp. 1–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.