PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An investigation of the effect of intermediate layer in three-component planar photonic crystal waveguides

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The introduction of a third component into planar photonic crystal waveguides definitely influences the properties of linear defect modes, such as the band diagram, intrinsic loss, group velocity and group velocity dispersion. With the increase of the dielectric constant of the interlayer, the guided modes shift to lower frequencies and the radiative losses decrease in the frequency region of high group velocity of defect mode. The analysis of the sensitivity of a band diagram to the introduction of an interlayer reveals that the wider the planar photonic crystal waveguide and the thicker the slab, the more tolerant the overall structure. When one designs the real planar photonic crystal waveguides, the effect of unintentional intermediate layer on the optical properties of planar photonic crystal waveguides has to be taken into consideration. At the same time, the introduction of an intentional interlayer into macroporous planar photonic crystal waveguides can be utilized to optimize the design.
Czasopismo
Rocznik
Strony
295--306
Opis fizyczny
bibliogr. 28 poz.,
Twórcy
autor
autor
autor
  • Key Laboratory of Optical Communication and Lightwave Technologies, Ministry of Education, School of Telecommunication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Bibliografia
  • [1] YAMADA K., MORITA H., SHINYA A., NOTOMI M., Improved line defect structures for photonic crystal waveguides with high group velocity, Optics Communications 198(4–6), 2001, pp. 395–402.
  • [2] SHINYA A., NOTOMI M., KURAMOCHI E., Single-mode transmission in commensurate width-varied line-defect SOI photonic crystal waveguides, Proceedings of SPIE 5000, 2003, pp. 125–135.
  • [3] NOTOMI M., YAMADA K., SHINYA A., TAKAHASHI J., TAKAHASHI C. ,YOKOHAMA I., Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs, Physical Review Letters 87(25), 2001, p. 253902.
  • [4] HUGHES S., RAMUNNO L., YOUNG J.F., SIPE J.E., Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity, Physical Review Letters 94(3), 2005, p. 033903.
  • [5] CHUTINAN A., NODA S., Waveguides and waveguide bends in two-dimensional photonic crystal slabs, Physical Review B: Condensed Matter 62(7), 2000, pp. 4488–4492.
  • [6] TANAKA Y., ASANO T., AKAHANE Y., SONG B.S., NODA S., Theoretical investigation of a two--dimensional photonic crystal slab with truncated cone air holes, Applied Physics Letters 82(11), 2003, pp. 1661–1663.
  • [7] GERACE D., ANDREANI L.C., Disorder-induced losses in photonic crystal waveguides with line defects, Optics Letters 29(16), 2004, pp. 1897–1899.
  • [8] GERACE D., ANDREANI L.C., Low-loss guided modes in photonic crystal waveguides, Optics Express 13(13), 2005, pp. 4939–4951.
  • [9] JOHNSON S.G., POVINELLI M.L., SOLJACIC M., KARALIS A., JACOBS S., JOANNOPOULOS J.D., Roughness losses and volume-current methods in photonic-crystal waveguides, Applied Physics B: Lasers and Optics 81(2–3), 2005, pp. 283–293.
  • [10] GLUSHKO A., KARACHEVTSEVA L., PBG properties of three-component 2D photonic crystals, Photonics and Nanostructures: Fundamentals and Applications 4(3), 2006, pp. 141–145.
  • [11] TRIFONOV T., MARSAL L.F., RODRIGUEZ A., PALLARES J., ALCUBILLA R., Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer, Physical Review B: Condensed Matter 70(19), 2004, p. 195108.
  • [12] THITSA M., SONG Y., ALBIN S., Effect of oxidation, etching, and thin-film deposition on silicon photonic crystals, Journal of the Electrochemical Society 155(6), 2008, pp. H351–H356.
  • [13] ZHANG X., ZHANG Z., LI L., JIN C., ZHANG D., MAN B., CHENG B., Enlarging a photonic band gap by using insertion, Physical Review B: Condensed Matter 61(3), 2000, pp. 1892–1897.
  • [14] JOANNOPOULOS J.D., MEADE R.D., WINN J.N., Photonic Crystals: Molding the Flow of Light, Princeton, Princeton University Press, NJ, 1995.
  • [15] ANDREANI L.C., AGIO M., Photonic bands and gap maps in a photonic crystal slab, IEEE Journal of Quantum Electronics 38(7), 2002, pp. 891–898.
  • [16] ANDREANI L.C., GERACE D., Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method, Physical Review B: Condensed Matter and Materials Physics 73(23), 2006, pp. 235114/1–16.
  • [17] ANDREANI L.C., AGIO M., Intrinsic diffraction losses in photonic crystal waveguides with line defects, Applied Physics Letters 82(13), 2003, pp. 2011–2013.
  • [18] LETARTRE X., SEASSAL C., GRILLET C., ROJO-ROMEO P., VIKTOROVITCH P., LE VASSOR D’YERVILLE M., CASSAGNE D., JOUANIN C., Group velocity and propagatin losses measurement in a single-line photonic-crystal waveguide on InP membranes, Applied Physics Letters 79(15), 2001, pp. 2312–2314.
  • [19] NOTOMI M., SHINYA A., YAMADA K., TAKAHASHI J.-I., TAKAHASHI C., YOKOHAMA I., Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs, IEEE Journal of Quantum Electronics 38(7), 2002, pp. 736–742.
  • [20] HOSOMI K., KATSUYAMA T., A dispersion compensator using coupled defects in a photonic crystal, IEEE Journal of Quantum Electronics 38(7), 2002, pp. 825–829.
  • [21] SAYNATJOKI A., MULOT M., AHOPELTO J., LIPSANEN H., Dispersion engineering of photonic crystal waveguides with ring-shaped holes, Optics Express 15(13), 2007, pp. 8323–8328.
  • [22] PETROV A.YU., EICH M., Zero dispersion at small group velocities in photonic crystal waveguides, Applied Physics Letters 85(21), 2004, pp. 4866–4868.
  • [23] KRAUSS T.F., Slow light in photonic crystal waveguides, Journal of Physics D: Applied Physics 40(9), 2007, pp. 2666–2670.
  • [24] PETROV A.YU., EICH M., Dispersion compensation with photonic crystal line defect waveguides, IEEE Journal on Selected Areas in Communications 23(7), 2005, pp. 1396–1401.
  • [25] KAFESAKI M., SOUKOULIS C.M., AGIO M., Losses and transmission in two-dimensional slab photonic crystals, Journal of Applied Physics 96(8), 2004, pp. 4033–4038.
  • [26] BENISTY H., LABILLOY D., WEISBUCH C., SMITH C.J.M., KRAUSS T.F., CASSAGNE D., BERAUD A., JOUANIN C., Radiation losses of waveguide-based two-dimensional photonic crystals: Positive role of the substrate, Applied Physics Letters 76(5), 2000, pp. 532–534.
  • [27] O’FAOLAIN L., YUAN X., MCINTYRE D., THOMS S., CHONG H., DE LA RUE R.M., KRAUSS T.F., Low--loss propagation in photonic crystal waveguides, Electronics Letters 42(25), 2006, pp. 1454–1455.
  • [28] TANAKA Y., SUGIMOTO Y., IKEDA N., NAKAMURA H., ASAKAWA K., INOUE K., JOHNSON S.G., Group velocity dependence of propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes, Electronics Letters 40(3), 2004, pp. 174–176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0011-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.