PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A three-dimensional micromechanical modelling of the anisotropy of granular media

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a micromechanical approach to the granular media with a particular account of the texture-induced anisotropy. The procedure is based on the use of a second-order fabric tensor corresponding to the anisotropy induced by the distribution of contacts. Incorporation of this fabric tensor into a homogenization scheme allows us to obtain the anisotropic elastic properties of the material. Besides the classical Voigt localization, as well as the Reuss approach, we propose a new kinematics-based localization rule which generalizes the one provided by [4] in the case of an isotropic contact distribution. Finally, it is demonstrated that the results deduced from the proposed localization rule agree with the numerical result obtained [10] by means of discrete numerical simulations.
PL
Przedstawiono mikromechaniczne podejście do ośrodków ziarnistych ze szczególnym uwzględnieniem anizotropii spowodowanej przez ich teksturę. Podejście to opiera się na użyciu tensora drugiego rzędu, który odpowiada anizotropii wywołanej rozkładem styków. Dzięki włączeniu tego tensora do schematu homogenizacji otrzymuje się anizotropowe i sprężyste właściwości materiału. Oprócz klasycznej lokalizacji Voigta i podejścia Reussa zaproponowano nową, opartą na kinematyce, regułę lokalizacji, która uogólnia reguły podane w [4] w przypadku rozkładu izotropowych kontaktów. Na koniec pokazano, że wyniki wydedukowane na podstawie zaproponowanej reguły lokalizacji [10] są zgodne z wynikami dyskretnych symulacji numerycznych.
Wydawca
Rocznik
Strony
17--43
Opis fizyczny
bibliogr. 37 poz.,
Twórcy
autor
autor
autor
  • Laboratory of Industrial and Human Automatics, Mechanics and Informatics, UMR CNRS 8530, University of Valenciennes, Le Mont Houy, 59313 Valenciennes, France.
Bibliografia
  • [1] BATHURST R.J., ROTHENBERG L., Micromechanical aspects of isotropic granular assemblies with linear contact interactions, Journal of Applied Mechanics ASME, 1988, Vol. 55, 17–23.
  • [2] BATHURST R.J., ROTHENBURG L., Observations on stress force-fabric relationships in idealized granular materials, Mech. Mater., 1990, No. 9, 65–80.
  • [3] BOEHLER J.P., Application of tensors functions in solids mechanics, CISM courses and lectures, No.292, Springer-Verlag, Wien, New York, 1987.
  • [4] CAMBOU B., DUBUJET Ph., EMERIAULT F., SIDOROFF F., Homogenization for granular materials, European Journal of Mechanics, A/Solids, 1995, Vol. 14, No. 2, 225–276.
  • [5] CAMBOU B., CHAZE M., DEDECKER F., Change of scale in granular materials, European Journal of Mechanics, A/Solids, 2000, No. 19, 999–1014.
  • [6] CAMBOU B., JEAN M., Micromécanique des materiaux granulaires, Hermes Science, 2001.
  • [7] CAMBOU B., DUBUJET PH., NOUGUIER-LEHON C., Anisotropy in granular materials at different scales, Mechanics of materials, 2004, 1–10.
  • [8] CHANG C.S., Micromechanical modeling of constitutive equation for granular materials, Micromechanics of granular materials, Elsevier Science Publishers, 1988, 271–278.
  • [9] CHANG C.S., LIAO C.L., Constitutive relations for particulate medium with the effect of particle rotations, International Journal of Solids and Structures, 1990, Vol. 26, No. 4, 437–453.
  • [10] CHANG C.S., LIAO C.L., Estimates of elastic moduli for media of randomly packed granules, Appl.Mech. Rev., 1994, Vol. 47, No. 1, Part 2, 197–207.
  • [11] CHANG C.S., CHAO S.J., CHANG Y., Estimates of elastic moduli for granular material with anisotropic random packing structure, International Journal of Solids and Structures, 1995, Vol. 32, No.14, 1989–2008.
  • [12] CHANG C.S., GAO J., Kinematic and static hypotheses for constitutive modelling of granulates considering particle rotation, Acta Mech., 1996, No. 115, 213–229.
  • [13] CHAPUIS R.B., De la structure des milieux granulaires en relation avec leur comportement mécanique, PhD Thesis, Montréal, Canada, 1976.
  • [14] CHRISTOFFERSEN J., MEHRABADI M.M., NEMAT-NASSER S., A micromechanical description of granular material behavior, Journal of Applied Mechanics, ASME, 1981, Vol. 48, No. 2, 339–344.
  • [15] EMERIAULT F., CAMBOU B., MAHBOUBI A., Homogenization for granular materials: non reversible behaviour, Mechanics of Cohesive-Frictional Materials, 1996, Vol. 1, 199–218.
  • [16] EMERIAULT F., CHANG C.S., Interparticle forces and displacement in granular materials, Computer and Geotechnics, 1997, 20 (3/4), 223–244.
  • [17] FORTIN J., Simulation numérique de la dynamique des systèmes multicorps appliquée aux milieux granulaires, PhD Thesis, University of Lille, 2000.
  • [18] HE Q.-C., CURNIER A., A more fundamental approach to damaged elastic stress–strain relations, Int. J. Solids Structures, 1995, Vol. 32, No. 10, 1433–1457.
  • [19] JENKINS J.T., Anisotropic elasticity for random arrays of identical spheres, Modern Theory of Anisotropic Elasticity and Applications, J. Wu. (Ed)., SIAM, Philadelphia, 1991.
  • [20] JENKINS J.T., Inelastic behavior of random arrays of identical spheres, Fleck N.A. and Cocks A.C.E. (Eds), IUTAM Symposium on Mechanics of Granular and Porous Materials, Kluwer Academic Publishers, 1997, 11–22.
  • [21] KANATANI K., Distribution of directional data and fabric tensors, Int. J. Engng Sci., 1984, Vol. 22, No. 2, 149–164.
  • [22] KRAJCINOVIC D., Damage mechanics, North-Holland, The Netherlands, 1996.
  • [23] LIAO C.-L., CHANG T.-C., YOUNG C.S., Stress–strain relationship for granular materials based on the hypothesis of the best fit, Int. J. Solids. Struct., 1997, Vol. 34, 4010–4087.
  • [24] LOUIS L., DAVID C., METZ V., ROBION P., MENENDZ B., KISSEL C., Microstructural control on the anisotropy and transport properties in undeformed sandstones, International Journal of Rock Mechanics and Mining Sciences, 2005, No. 42, 911–923.
  • [25] LOUIS L., ROBION P., DAVID C., FRIZON DE LAMOTTE D., Multiscale anisotropy controlled by folding: the example of the Chaudrons fold (Corbieres, France), J. Struct. Geology, 2006, Vol. 28, No.4, 549–560.
  • [26] LOVE A.E.H., A treatise of mathematical theory of elasticity, University Press, Cambridge, 1927.
  • [27] LUBARDA V.A., KRAJCINOVIC D., Damage tensors and the crack density distribution, Int. J. Solids Structures, 1993, Vol. 30, No. 20, 2859–2877.
  • [28] MADADI M., TSOUNGUI O., LÄTZEL M., LUDING S., On the fabric tensor of polydisperse granular materials in 2D, International Journal of Solids and Structures, 2004, No. 41, 2563–2580.
  • [29] NOUGIER C., Simulation des interactions outil-sol : application aux outils de traitement des sols, Thèse de doctorat du Département de Modélisation Physique et Numérique de l’Institut de Physique du Globe de Paris, 1999.
  • [30] NOUGUIER-LEHON C., DUBUJET P., CAMBOU B., Analysis of granular material behaviour from two kinds of numerical modelling, 15th ASCE Engineering Mechanics Conference, Columbia University, New York, NY, June 2002.
  • [31] PENSEE V., Contribution de la micromécanique à la modélisation tridimensionnelle de l’endommagement par mésofissuration, PhD Thesis, University of Lille, 2002.
  • [32] ROTHENBURG L., SELVADURAI A.P.S., Micromechanical definition of the Cauchy stress tensor for particulate media, Mechanics of Structured Media, Elsevier, Amsterdam, The Netherlands, 1981, 469–486.
  • [33] SATAKE M., Constitution of mechanics of granular materials through graph theory, Cowin S.C. et Satake M. (Eds.), Proc. US-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Elsevier, Amsterdam, The Netherlands, 1978, 47–62.
  • [34] SIDOROFF F., CAMBOU B., MAHBOUBI A., Contact force distribution in granular media, Mechanics of Materials, 1993, No. 16, 83–89.
  • [35] SPENCER A.J.M., Isotropic polynomial invariants and tensor functions, J.P. Beohler (ed.), Applications of Tensor Functions in Solid Mechanics, CISM Courses and Lectures No. 292, Springer, Berlin, 1987, 141–169.
  • [36] WALTON K., The effective elastic moduli of random packing of spheres, Journal of Mechanics and Physics of Solids, 1987, Vol. 35, No. 3, 213–226.
  • [37] WEBER J., Recherches concernant les contraintes intergranulaires dans les milieux pulvirulents, bul.liaison P. et Ch., No. juil.–aoûut 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0010-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.