PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Forest fires smoke monitoring from Sea-viewing Wide Field-of-view Sensor images

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method for detecting forest fires smoke using SeaWiFS (Sea-viewing Wide Field-of View Sensor) images is developed in this paper. The colour masking technique is proposed to extract the maximum fires smoke pixels from the SeaStar/SeaWiFS satellite images by using Fusion by Arithmetic Combination (FAC) of the spectral bands method. Each image used is converted from RGB (Red, Green, Blue) to HIS (Hue, Saturation, Intensity) system. The resulting smoke plumes pixels are obtained visually in the Intensity and Saturation images. Then the values of intensity and saturation are analyzed to be potentially applied in other images. In this research, we applied our detecting forest fires smoke algorithm in seven different scenes, and in a variety of conditions, including different regions of the planet, and different dates. Next, Smoke Pixel Reference Ratio (SPRR) was used to test the proposed method. We found that the method can detect maximum pixels of smoke plumes in spite of some limitations.
Słowa kluczowe
Czasopismo
Rocznik
Strony
737--754
Opis fizyczny
Bibliogr. 19 poz.,
Twórcy
autor
autor
autor
autor
  • Laboratory of Application and Analysis of Radiations LAAR, Department of Physics USTOMB. El M'nouer B.P.1505 Oran, Algeria
Bibliografia
  • [1] CRUTZEN P.J., HEIDT L.E., KRASNEC J.P., POLLOCK W.H., SEILER W., Biomass burning as a source of atmospheric gases, CO, H2O, N2O, NO, CH3CL and COS, Nature 282(5736), 1979, pp. 253–256.
  • [2] CRUTZEN P.J., ANDREAE M.O., Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycle, Science 250(4988), 1990, pp. 1669–78.
  • [3] KAUFMAN Y.J., JUSTICE C., FLYNN C.L., KENDALL J., SETZER A., Potential global fire monitoring from EOS-MODIS, Journal of Geophysical Research 103, 1998, pp. 32215–38.
  • [4] KAUFMAN Y.J., FRASER R.S., The effect of smoke particles on clouds and climate forcing, Science 277(5332), 1997, pp. 1636–39.
  • [5] REID J.S., HOBBS P.V., RANGNO A.L., HEGG D.A., Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke, Journal of Geophysical Research 104(D6), 1999, pp. 6145–53.
  • [6] LI Z., BARKER H., MOREAU L., The variable effect of clouds on atmospheric absorption of solar radiation, Nature 376(6540), 1995, pp. 486–490.
  • [7] LI Z., Influence of absorbing aerosols on the solar surface radiation budget, Journal of Climate 11, 1998, pp. 5–17.
  • [8] SIFAKIS N., PARONIS D., KERAMITSOGLOU I., Combining AVHRR imagery with CORINE Land Cover data to observe forest fires and to assess their consequences, International Journal of Applied Earth Observation and Geoinformation 5(4), 2004, pp. 263–74.
  • [9] JUSTICE C.O., MALINGREAU J.P., SETZER A.W., Satellite remote sensing of fires: Potentials and limitations, [in:] Fire in the Environment, [Eds.] P.J. Crutzen, J.G. Goldammer, John Wiley and Sons Ltd., 1993, p. 77–88.
  • [10] SETZER A.W., MALINGREAU J.P., AVHRR monitoring of vegetation fires in the tropics: Toward the development of a global product, [in:] Biomass Burning and Global Change, ed. J.S. Levine, The MIT Press, Cambridge, 1996, pp. 25–39.
  • [11] RAJEEV K.J., SAUMITRA M., KUMARAN D.R., RAJESH S., Forest fire risk zone mapping from satellite imagery and GIS, International Journal of Applied Earth Observation and Geoinformation 4(1), 2002, 1–10.
  • [12] KIBLER J., The Recent and Future Changes of the Hazard Mapping System (HMS) – A Multiplatform Remote Sensing Approach to Fire and Smoke Detection, Atmospheric Sciences and Air Quality Conference ASAQC ’05, Proceedings, 2, 2005, pp. 121–35. 754 A. HASSINI et al.
  • [13] GIGLIO L., DESCLOITRES J., JUSTICE C.O., KAUFMAN Y., An enhanced contextual fire detection algorithm for MODIS, Remote Sensing of Environment, 87, 2003, pp. 273–82.
  • [14] GRÉGOIRE J.M., CAHOON D., STROPPIANA D., Fundamentals of Remote Sensing, Canada Centre for Remote Sensing, Quebec 2002, pp. 68–69.
  • [15] LEBLON B., GARCÍA P.A.F., OLDFORD S., MACLEAN D.A., FLANNIGAN M., Using cumulative NOAAAVHRR spectral indices for estimating fire danger codes in northern boreal forests, International Journal of Applied Earth Observation and Geoinformation, 9(3), 2007, 335–42.
  • [16] HASSINI A., BENABADJI N., BELBACHIR A.H., Reception of the APT Weather Satellite Images, Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE) Journal, Advances B, France, 48(1), 2005, pp. 25–43.
  • [17] KAUFMAN Y.J., REMER L.A., Detection of forests using mid-IR reflectance: An application for aerosol studies, IEEE Transactions on Geoscience and Remote Sensing, 32, 1994, pp. 672–83.
  • [18] HASSINI A., BENABADJI N., HASSINI N., BELBACHIR A.H., Forest Fires Smoke Detection from SeaWiFS Sensor Data: Case of Algerian Coast, International, Conference on Information and Communication Technologies: From Theory to Applications, IEEE Proceedings, 1, 2006, pp. 412–17.
  • [19] HOMG W.B., PENG J.W., CHEN C.Y., A New Image-Based Real-Time Flame Detection Method Using Color Analysis, IEEE Networking, Sensing and Control Proceedings, 2005, pp. 100–05.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0009-0066
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.