PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Iron filled carbon nanotubes for bio-applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most interesting bio-applications of nanoparticles refers to as "magnetic fluid hyperthermia" (MFH), i.e. a controlled heating of tumor tissue. In the MFH therapy, magnetic nanoparticles are infiltrated in deep tumor tissue and inductively heated by applying alternating current magnetic fields. The biggest challenge of MFH therapy is the temperature control for which fibre-optic thermometers should be inserted into a tumor. A potential way to overcome this problem seems to be application of carbon nanotubes filled with iron which could provide in-situ temperature controlling. Therefore, the synthesis routes of iron filled single-walled carbon nanotubes (Fe-SWCNT) and iron filled multi-walled carbon nanotubes (Fe-MWCNT) has been presented. These two types of nanostructures were prepared via wet chemistry technique and by in situ single step chemical vapour deposition for Fe-SWCNT and Fe-MWCNT, respectively. The samples were examined by means of transmission electron microscopy, in bright and dark field images modes, and X-ray diffraction.
Wydawca
Rocznik
Strony
413--418
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Centre of Knowledge Based Nanomaterials and Technologies, Institute of Chemical and Environment Engineering, Szczecin University of Technology, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • [1] IIJIMA S., ICHIHASHI T., Nature, 363 (1993), 603.
  • [2] YAKOBSON B.I., SMALLEY R.E., Am. Sci., 85 (1997), 324.
  • [3] SHVARTZMAN-COHEN R., NATIV-ROTH E., YERUSHALMI-ROZEN R., BASKARAN E., SZLEIFER I., LEVI-KALISMAN Y., J. Am. Chem. Soc., 126 (2004), 14850.
  • [4] SINANI V.A., KOTOV N.A., YAROSLAVOV A.A., RAKHNYANSKAYA A.A., GHEITH M.K., WICKSTED J.P., SUN K., MAMEDOV A.A., J. Am. Chem. Soc., 127 (2005), 3463.
  • [5] NAKASHIMA N., OKUZONO S., MURAKAMI H., NAKAI T., YOSHIKAWA K., Chem. Lett., 32 (2003), 456.
  • [6] ZHENG M., JAGOTA A., SEMKE E.D., DINER B.A., MCLEAN R.S., LUSTIG S.R., RICHARDSON R.E., TASSI N.G., Nature Mater., 2 (2003), 338.
  • [7] TAGMATARCHIS N., PRATO M., J. Mater. Chem., 14 (2004), 437.
  • [8] HIRSCH A., Angew. Chem. Int. Ed., 41 (2002), 1853.
  • [9] DYKE C.A., TOUR J.M., Chem. Eur. J., 10 (2004), 812.
  • [10] STEVENS J.L., HUANG A.Y., PENG H., CHIANG I.W., KHABASHESKU V.N., MARGRAVE J.L., Nano Lett., 3 (2003), 331.
  • [11] HUDSON J.L., CASAVANT M.J., TOUR J.M., J. Am. Chem. Soc,. 126 (2004), 11158.
  • [12] DUJARDIN E., EBBESEN T.W., HIURA H., TANIGAKI K., Science, 265 (1994), 1850.
  • [13] CHU A., COOK J., HEESON R.J.R., HUTCHINSON J.L., GREEN M.L.H., SLOAN J., Chem. Mater., 8 (1996), 2751
  • [14] SLOAN J., HAMMER J., ZWIEFKA-SIBLEY M., GREEN M.L.H., Chem. Commun., (1998), 347
  • [15] ZHANG Z.L., LI B., SHI Z.J., GU Z.N., XUE Z.Q., PENG L-M., J. Mater. Res., 15 (2000), 2658.
  • [16] MATSUI K., PRADHAN B.K., KYOTANI T., TAMITA A., J. Phys. Chem. B, 105 (2001), 5682.
  • [17] BOROWIAK-PALEN E., RUEMMELI M.H., GEMMING T., PICHLER T., KALENCZUK R.J., SILVA S.R.P., Nanotechnology, 17 (2006), 1.
  • [18] BOROWIAK-PALEN E., MENDOZA E., BACHMATIUK A., RÜMMELI M.H., GEMMING T., NOGUES J., SKUMRYEV V., KALENCZUK R.J., PICHLER T., SILVA S.R.P., Chem. Phys. Lett., 421 (2006), 129.
  • [19] PANKHURST Q.A., CONOLLY J., JONES S.K., DOBSON J., J. Phys. D: Appl. Phys., 36 (2003), R167.
  • [20] JORDAN A., SCHOLZ R., WUST P., FAHLING H., FELIX R., J. Magn. Magn. Mater., 201 (1999), 413.
  • [21] RUMMELI M.H., LOFFLER M., KRAMBERGER C., SIMON F., FULOP F., JOST O. SCHONFELDER R., GRUNEI A., GEMMING T., POMPE W., BUCHNER B., PICHLER T., J. Phys. Chem. C, 111 (2007), 4094.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0210
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.