PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of ceria-based nanopowders suitable for manufacturing solid oxide electrolytes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Co-precipitation method and hydrothermal synthesis were used to fabricate nanopowders of pure CeO2 and singly or co-doped ceria materials in the CeO2-Sm2O3-Y2O3 or CeO2-Gd2O3-Sm2O3 systems. All sintered powders and samples were found to be pure CeO2 and ceria-based solid solution of fluoritetype structure. The surface areas of CeO2-based nanopowders were measured by the one-point BET method. The morphologies of powders were observed by means of transmission electron microscopy. Particle sizes of ceria powders synthesised by the hydrothermal method ranged from 9 to 15 nm, the particle sizes of powders calcined at 800 oC ranged from 13 to 26 nm. The TEM observations indicated that all CeO2-based powders consisted of isometric in shape and agglomerated particles. Scanning electron microscope was used to observe the microstructure of the sintered samples. Electrical conductivity was studied by the a.c. impedance spectroscopy in the temperature range 200-700 oC. The oxygen transference number was determined from EMF measurements of oxide galvanic cells. It was found that codoped ceria materials such as Ce0.8Sm0.1Y0.1O2 or Ce0.85Gd0.1Sm0.05O2 seem to be more suitable solid electrolytes than singly-doped ceria Ce1-xMxO2 (M - Sm, Gd, Y, x = 0.15 or 0.20) for electrochemical devices working in the temperature range 600-700 oC.
Wydawca
Rocznik
Strony
319--329
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
autor
  • AGH-University of Science and Technology, Faculty of Materials Science and Ceramics, 30-059 Cracow, Poland
Bibliografia
  • [1] FERGUS J.W., J. Power Sources, 162 (2006), 30.
  • [2] MINH N.Q., TAKAHASHI T., Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam 1995.
  • [3] GIBBSON R.W., KUMAR R.V., FRAY D.J., Solid State Ionics, 121(1999), 43.
  • [4] BESRA L., COMPSON CH., LIU M., J. Am. Ceram. Soc., 89 (2006), 3003.
  • [5] TIETZ F., BUCHKREMER H., STÖVER., Solid State Ionics, 152–153 (2002), 373.
  • [6] BRYLEWSKI T., NANKO M., MARUYAMA T., PRZYBYLSKI K., Solid State Ionics, 143 (2001), 131.
  • [7] INABA H., TAGAWA H., Solid State Ionics, 83 (1996), 1.
  • [8] KHARTON V., FIGUEIREDO F., NAVARRO L., NAUMOVICH E., KOVALEVSKY A., YAREMCHENKO A., VISKUP A., CARNEIRO A., MARGUES M., FRADE J., J. Mater. Sci., 36 (2001),1105.
  • [9] XIONG Y., YAMAJI K., HORITA T., SAKAI N., YOKOKAWA H., J. Electrochem. Soc., 149 (2002), 450.
  • [10] SAMESHIMA S., HIRATA Y., EHIRA Y., J. All. Comp., 408–412(2006),628.
  • [11] HONG J., MEHTA K., J. Electrochem. Soc., 145 (1998), 638.
  • [12] MORI T., IKEGAMI T., YAMAMURA H., J. Electrochem. Soc., 146 (1999), 4380.
  • [13] DUDEK M., ZIEWIEC K., Adv. Mater. Sci., 6 (2006), 53.
  • [14] SHA X., LÜ Z., HUANG X., MIAO Z., JIA L., XIN X., SU W., J. All. Comp., 424 (2006), 315.
  • [15] JI Y., LIU J., HE T., WANG J., SU W., J. All. Comp., 389 (2005), 317.
  • [16] DRENNAN J., AUCHTERLONIE G., Solid State Ionics, 134 (2000), 75.
  • [17] NIIHARA K.., J. Mater. Sci. Lett., 2 (1983), 221.
  • [18] SHANNON R., PREWITT T., Acta Cryst. B, 25 (1969), 925.
  • [19] HUNG W., SHUK P., GREENBLATT M., Solid State Ionics, 113–115 (1998), 305.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0199
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.