Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerosol-assisted synthesis of SiC-based nanopowders from organosilicon precursor systems

Warianty tytułu
Języki publikacji
Thermally-driven decomposition of various organosilicon derivatives under a neutral gas atmosphere constitutes a reliable way for the preparation of carbon/silicon carbide C/SiC composites (modified carbon materials) in the nanosized range. The two-stage aerosol-assisted synthesis method appears to be especially well suited to fabricate such materials while offering spherical particle morphology with tailored particle size capability. In this method, in the first stage an aerosol mist is generated from a liquid precursor system and transported in a neutral gas stream to a pre-heated ceramic tube reactor where complex physical and chemical changes take place resulting in the formation of solid particles collected on an exit filter. The raw product is usually pyrolyzed in the second stage at appropriately high temperatures to complete the anticipated removal of residual oxygen if excess C is present via carbothermal reduction. In this study, preliminary results on the target C/SiC composites prepared with the aerosol method from selected organosilicon precursors are presented. The precursors included hexamethyldisiloxane, tetramethoxysilane, and silicone oil (poly(dimethylsiloxane)) and its ethanol solutions. In the first stage, the aerosols were subject to decomposition at 1200 oC under an Ar flow and raw products containing SiOxCy/SiO2 and free C of varied proportions were produced. In the second stage, the raw powders were pyrolyzed at 1650 oC for 1 h under an Ar flow. The presence of a sufficient excess of free C in the raw product should lead in principle to efficient carbothermal reduction processes and conversion of SiOxCy/SiO2 to SiC in a composite system with the remaining free carbon, if any; otherwise, SiC/SiO2 or even SiC/SiO2/Si composites can be produced.
Słowa kluczowe
Opis fizyczny
Bibliogr. 16 poz.
  • Faculty of Fuels and Energy, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  • [1] MATSUMOTO T., TAKAHASHI J., TAMAKI T., FUTAGI T., MIMURA H., KANEMITSU Y., Appl. Phys. Lett. 64 (1994), 226.
  • [2] KASSIBA A., TABELLOUT M., CHARPENTIER S., HERLIN N., EMERY J.R., Solid State Commun. 115 (2000), 389.
  • [3] KITYK I.V., MAKOWSKA-JANUSIK M., KASSIBA A., PLUCINSKI K.J., Opt. Mater. 13 (2000), 449.
  • [4] SUN J., LI J., SUN G., ZHANG B., ZHANG S., ZHAI H., Ceram. Int. 28 (2002), 741.
  • [5] YIN X., CHENG L., ZHANG L., XU Y., Carbon 40 (2002), 905.
  • [6] CHENG L., XU Y., ZHANG L., LUAN X., Carbon 40 (2002), 2229.
  • [7] MARTIN H.- P., ECKE R., MULLER E., J. Eur. Ceram. Soc. 18 (1998), 1737.
  • [8] CZOSNEK C., RATUSZEK W., JANIK J.F., OLEJNICZAK Z., Fuel Proc. Techn. 79 (2002), 199.
  • [9] CZOSNEK C., WOLSZCZAK J., DRYGAŚ M., GÓRA M., JANIK J.F., J. Phys. Chem. Solids 65 (2004), 647.
  • [10] YAJIMA S., Am. Ceram. Soc. Bull. 62 (1983), 893.
  • [11] YAJIMA S., HASEGAWA Y., HAYASHI J., IIMURA M., J. Mater. Sci. 13 (1978), 2569.
  • [12] PARMENTIER J., SORARÙ G.D., BABONNEAU F., J. Eur. Ceram. Soc. 21 (2001), 817.
  • [13] SORARÙ G.D., SUTTOR D., J. Sol-Gel Sci. Technol. 14 (1999), 69.
  • [14] BREQUEL H., PARMENTIER J., SORARÙ G.D., SCHIFFINI L., ENZO S., Nanostruct. Mater., 11 (1999), 721.
  • [15] GREGORI G., KLEEBE H.-J., READEY D.W., SORARÙ G.D., J. Am. Ceram. Soc., 89 (2006), 1699 .
  • [16] HURWITZ F.I., HEIMANN P., FARMER S.C., J. Mater. Sci. 28 (1993), 6622.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.