PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of microelectrodes for investigation of the oxygen electrode reaction in selected solid electrolytes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a solid oxide fuel cell (SOFC), the most often used solid electrolyte is yttria stabilized zirconia. Usually, SOFC of a tubular geometry operates at ca. 1000 °C. To decrease the temperature of the cell, it is necessary to reduce the thickness of electrolyte or replace yttrium-stabilized zirconium with an other electrolyte of a much higher ionic conductivity. A potential candidate for an electrolyte in intermediate temperature SOFC is gadolinia doped ceria. The largest energetic losses in a fuel cell of this type, apart of ohmic polarizations, are attributed to slow kinetics of the cathodic process. In this work, investigated oxygen electrode reaction for two various electrolytes: yttria stabilized zirconia and gadolinia doped ceria. The measurements were conducted using microelectrodes for which analysis of kinetic parameters of the electrode reaction is easier. Gold electrodes were applied in the experiments. Although Au is a good electrocatalyst for oxygen reduction, almost no research has been done for this metal so far. The performance of the electrode and results of impedance measurements have been presented and discussed.
Słowa kluczowe
Wydawca
Rocznik
Strony
195--206
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
  • Faculty of Fuels and Energy, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland,
Bibliografia
  • [1] MINH N.Q., TAKAHASHI T., Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam, 1995.
  • [2] GELLINGS P.J., BOUWMEESTER H.J.M., The CRC Handbook of Solid State Ionics Electrochemistry, CRC Press, Boca Raton, FL, 1997.
  • [3] TULLER H.L., Solid State Ionics, 131 (2000), 143.
  • [4] STEELE B.C.H., Solid State Ionics, 129 (2000), 95.
  • [5] MOGENSEN M., SAMMES N.M., TOMPSETT G.A., Solid State Ionics, 129 (2000), 63.
  • [6] JACOBSEN T., ZACHAU-CHRISTIANSEN B., JØRGENSEN M., Electrochim. Acta, 46 (2001), 1019.
  • [7] JACOBSEN T., BAY L., Electrochim. Acta, 47 (2002), 2177.
  • [8] BREITER M. W., LEEB K., FAFILEK G., J. Electroanal. Chem., 434 (1997), 129.
  • [9] PĘDZICH Z., HABERKO K., Ceramic Int., 20 (1994), 85.
  • [10] PAWŁOWSKI A., BUĆKO M. M., PĘDZICH Z., Mater. Res. Bull., 37 (2002), 425.
  • [11] DUDEK M., MOLENDA J., Mater. Sci.-Poland, 24 (2006), 45.
  • [12] STELLE B.C.H., Oxygen Ion Conductors, [in:] High Conductivity Solid Ionic Conductors, T. Takahasi (Ed.), World Scientific, Singapore, 1989, p. 402.
  • [13] KUDO T., OBAYASHI H., J. Electrochem. Soc., 122 (1975), 142.
  • [14] YAMAMOTO O., Electrochim. Acta, 45 (2000), 2423.
  • [15] KUDO T., OBAYASHI H., J. Electrochem. Soc., 123 (1976), 415.
  • [16] INABA H., TAGAWA H., Solid State, 83 (1996), 1.
  • [17] RIESS I., BRAUNSHTEIN D., TANNHAUSER D.S., J. Am. Ceram. Soc., 64 (1981), 479.
  • [18] BALAZS G. B., GLASS R.S., Conductivity measurements of ceria based solid electrolytes using AC impedance, [in:] Ionic and Mixed Conducting Ceramics, T.A. Ramanarayanan, W.L. Worrell, H.L. Tuller (Eds.), Proc. 2nd Intern Symp., The Electrochemical Society, 1994, p. 478.
  • [19] EGUCHI K., SETOGUCHI T., INOUE T., ARAI H., Solid State Ionics, 52 (1992), 165.
  • [20] TIANSHU Z., HUANG H., KILNER J., HING P., Solid State Ionics, 148 (2002), 567.
  • [21] NEWMANN J., Electrochem. Soc., 113 (1966), 501.
  • [22] TOMCZYK P., ŻUREK S., MOSIAŁEK M., in preparation.
  • [23] BARD A.J., FAULKNER L.F., Electrochemical Methods Fundamental and Applications, Wiley, New York, 1980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0184
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.