PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser speckle contrast imaging for measuring blood flow

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When a diffuse object is illuminated with laser light, a random interference effect known as a speckle pattern is produced. If there is movement in the object, the speckles fluctuate in intensity. These fluctuations can be used to provide information about the movement. A simple way of accessing this information is to image the speckle pattern - the fluctuations cause a blurring of the speckle, leading to a reduction in the local speckle contrast. Thus velocity distributions are coded as speckle contrast variations. The same information can be obtained by using the Doppler effect, but producing a two-dimensional Doppler map requires scanning: speckle imaging provides the same information without the need to scan. This paper reviews the development of laser speckle imaging, starting with the connection established between speckle fluctuations and movement in the nineteen-seventies. In the eighties, a photographic technique for monitoring retinal blood flow was developed, and ten years later a digital version was used to monitor capillary blood flow in the skin. Today, many groups around the world are either using or researching the technique, and the paper will close by presenting some of their recent results.
Czasopismo
Rocznik
Strony
139--152
Opis fizyczny
Bibliogr. 48 poz.,
Twórcy
autor
  • Kingston University, Uk Wales, SA35 ODN
Bibliografia
  • [1] Rigden J.D., Gordon E.I., The granularity of scattered optical maser light, Proceedings of the IRE 50, 1962, pp. 2367-8.
  • [2] McKechnie T.S., Speckle reduction, [In] Laser Speckle and Related Phenomena [Ed.] J.C. Dainty, Vol. 9, Springer, New York 1975 (2nd Edition 1984).
  • [3] Dainty J.C. [Ed.], Laser Speckle and Related Phenomena, Vol. 9,Springer, New York 1975 (2nd Edition 1984).
  • [4] Goodman J.W., Statistical properties of laser speckle patterns, [In] Laser Speckle and Related Phenomena [Ed.] J.C. Dainty, Vol. 9, Springer, New York 1975 (2nd Edition 1984).
  • [5] Archbold E., Burch J.M., Ennos A.E., Recording of in-plane surface displacement by double-exposure speckle photography, Optica Acta 17(12), 1970, pp. 883-98.
  • [6] Briers J.D., Wavelength dependence of intensity fluctuations laser in speckle patterns from biological specimens, Optics Communications 13(3), 1975, pp. 324—6.
  • [7] Briers J.D., Speckle fluctuations as a screening test in the holographic measurement of plant motion and growth, Journal of Experimental Botany 29(2), 1978, pp. 395-9.
  • [8] Oulamara A., Tribillon G., Duvernoy J., Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle, Journal of Modern Optics 36(2),1989, pp. 165-79.
  • [9] Xu Z., Joenathan C, Khorana B.M., Temporal and spatial properties of the time-varying speckles of botanical specimens, Optical Engineering 34(5), 1995, pp. 1487-502.
  • [10] Stern M.D., In vivo evaluation of microcirculation by coherent light scattering, Nature 254(5495), 1975, pp. 56-8.
  • [11] Briers J.D., Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging, Physiological Measurement 22(4), 2001, pp. R35-66.
  • [12] BRIERS J.D., Laser Doppler and time-varying speckle: a reconciliation, Journal of the Optical Society of America A 13(2), 1996, pp. 345–50.
  • [13] RIVA C., ROSS B., BENEDEK G., Laser Doppler measurements of blood flow in capillary tubes and retinal arteries, Investigative Ophthalmology and Visual Science 11(11), 1972, pp. 936–44.
  • [14] FUJII H., NOHIRA K., YAMAMOTO Y., IKAWA H., OHURA T., Evaluation of blood flow by laser speckle image sensing: Part 1, Applied Optics 26(24), 1987, pp. 5321–5.
  • [15] FUJII H., Visualization of retinal blood flow by laser speckle flowgraphy, Medical and Biological Engineering and Computing 32(3), 1994, pp. 302–4.
  • [16] TAMAKI Y., ARAIE M., KAWAMOTO E., EGUCHI S., FUJII H., Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon, Investigative Ophthalmology and Visual Science 35(11), 1994, pp. 3825–34.
  • [17] KONISHI N., FUJII H., Real-time visualization of retinal microcirculation by laser flowgraphy, Optical Engineering 34(3), 1995, pp. 753–7.
  • [18] ESSEX T.J.H., BYRNE P.O., A laser Doppler scanner for imaging blood flow in skin, Journal of Biomedical Engineering 13(3), 1991, pp. 189–94.
  • [19] WÅRDELL K., JAKOBSSON A., NILSSON G.E., Laser Doppler perfusion imaging by dynamic light scattering, IEEE Transactions on Biomedical Engineering 40(4), 1993, pp. 309–16.
  • [20] HUANG X., LU L., GUSH R.J., BOGGETT D.M., A new, fast, high resolution laser Doppler imager for clinical and research use, [Eds.] K. Messmer, W.M. Kubler, Proceedings of the 6th World Congress for Microcirculation, Munich, August 1996, pp. 115–9.
  • [21] NILLSON G., Laser Doppler perfusion imaging for assessment of cutaneous microcirculation, Phlebologie 26, 1997, pp. 87–91.
  • [22] HARRISON D., ABBOT N.C., SWANSON BECK J., MCCOLLUM P.T., A preliminary assessment of laser Doppler perfusion imaging in human skin using the tuberculin reaction as a model, Physiological Measurement 14(3), 1993, pp. 241–52.
  • [23] KERNICK D.P., SHORE A.C., Characteristics of laser Doppler perfusion imaging in vitro and in vivo, Physiological Measurement 21(2), 2000, pp. 333–40.
  • [24] FERCHER A.F., BRIERS J.D., Flow visualization by means of single-exposure speckle photography, Optics Communications 37(5), 1981, pp. 326–30.
  • [25] BRIERS J.D., Optical filtering techniques to enhance speckle contrast variations in single-exposure laser speckle photography [retinal blood flow application], Optik (Stuttgart) 63(3), 1983, pp. 265–76.
  • [26] BRIERS J.D., FERCHER A.F., Retinal blood-flow visualization by means of laser speckle photography, Investigative Ophthalmology and Visual Science 22(2), 1982, pp. 255–9.
  • [27] BRIERS J.D., WEBSTER S., Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow, Journal of Biomedical Optics 1(2), 1996, pp. 174–9.
  • [28] CHENG H., LUO Q., ZENG S., CHEN S., CEN J., GONG H., Modified laser speckle imaging method with improved spatial resolution, Journal of Biomedical Optics 8(3), 2003, pp. 559–64.
  • [29] SENG E.Y.Y., PAUL J.S., Statistical measures based on laser speckle contrast analysis (LASCA) for quantification of vascular flow and perfusion changes during cortical stimulation, [In] Processing of the BioMED 2004, [Ed.] B. Tilg, Acta Press, 2004.
  • [30] PAUL J.S., LUFT A.R., YEW E., SHEU F.S., Imaging the development of an ischemic core following photochemically induced cortical infarction in rats using laser speckle contrast analysis (LASCA), Neuroimage 29(1), 2006, pp. 38–45.
  • [31] BRIERS J.D., RICHARDS G., HE X.W., Capillary blood flow monitoring using laser speckle contrast analysis (LASCA), Journal of Biomedical Optics 4(1), 1999, pp. 164–75.
  • [32] HE X.-W., BRIERS J.D., Laser speckle contrast analysis (LASCA): a real-time solution for monitoring capillary blood flow and velocity, Proceedings of SPIE 3337, 1998, pp. 98–107.
  • [33] DUNN A.K, BOLAY H., MOSKOWITZ M.A., BOAS D.A., Dynamic imaging of cerebral blood flow using laser speckle, Journal of Cerebral Blood Flow and Metabolism 21(3), 2001, pp. 195–201.
  • [34] Yuan S., Devor A., Boas D.A., Dunn A.K.., Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging, Applied Optics 44(10), 2005, pp. 1823-30.
  • [35] Volker A.C., Zakharov P., Weber B., Buck A., Scheffold F., Laser speckle imaging with an active noise reduction scheme, Optics Express 13(24), 2005, pp. 9782-7.
  • [36] Serov A., Steenbergen W., De Mul F., Prediction of the photodetector signal generated by Doppler-induced speckle fluctuations: theory and some validations, Journal of the Optical Society of America A 18(3), 2001, pp. 622-30.
  • [37] Zakharov P., Volker A., Buck A., Weber B., Scheffold F., Quantitative modelling of laser speckle imaging. Optics Letters 31(23), 2006, pp. 3465-7.
  • [38] Bandyopadhyay R., Gittings A.S., Suh S.S., Dixon P.K., Durian D.J., Speckle-visibility spectroscopy: a tool to study time-varying dynamics, Review of Scientific Instruments 76(9), 2005,pp. 93110/1-11.
  • [39] Shin H.K., Dunn A.K., Jones P.B., Boas D.A., Moskowitz M.A., Ayata C., Vasoconstrictive neurovascular coupling during focal ischemic depolarizations, Journal of Cerebral Blood Flow and Metabolism 25, 2005, pp. 1-13.
  • [40] Dunn A.K., Devor A., Dale A.M., Boas D.A., Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex, Neuroimage 27(2), 2005, pp. 279-90.
  • [41] Bolay H., Reuter U., Dunn A.K., Huang Z., Boas D.A., Moskowitz M.A., Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model, Nature Medicine 8(2), 2002,pp. 136-42.
  • [42] Cheng H., Luo Q., Liu Q., Lu Q., Gong H., Zeng S., Laser speckle imaging of blood flow in microcirculation. Physics in Medicine and Biology 49(7), 2004, pp. 1347-57.
  • [43] Gonik M.M., Mishin A.B., Zimnyakov D.A., Visualization of blood microcirculation parameters in human tissues by time-integrated dynamic speckles analysis, Annals of the New York Academy of Sciences 972, 2002, pp. 325-30.
  • [44] Nadkarni S.K., Bouma B.E., Helg T., Chan R., Halpern E., Chau A., Minsky M.S., Motz J.T., Houser S.L., Tearney G.J., Characterization of atherosclerotic plaques by laser speckle imaging, Circulation 112(6), 2005, pp. 885-92.
  • [45] Nagahara M., Tamaki Y., Araie M., Umeyama T., The acute effects of stellate ganglion block on circulation in human ocular fundus, Acta Ophthalmologica Scandinavica 79(1), 2001, pp. 45-8.
  • [46] Flammer J., OrgOl S., Costa V.P., Orzalesi N., Krieglstein G.K., Serra L.M., Renard J.-P.,Stefansson E., 772e impact of ocular bloodflow in glaucoma, Progress in Retinal and Eye Research 21(4), 2002, pp. 359-93.
  • [47] Aliverdiev A., Caponero M., Moriconi C, Speckle velocimeter for a self-powered vehicle, Technical Physics 47(8), 2002, pp. 1044-8.
  • [48] Romero G.G., Alanis E.E., Rabal H.J, Statistics of the dynamic speckle produced by a rotating diffuser and its application to the assessment of paint drying. Optical Engineering 39(6), 2000, pp. 1652-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0116
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.