PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectroscopic studies of Er-doped Si-rich silicon oxide/SiO2 multilayers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of Si nanocluster (Si-nc) size and of the distance between Si-nc and Er ion on the photoluminescence of the Er3+ ions have been investigated by means of appropriate multilayer configurations fabricated by reactive magnetron sputtering. On the one hand, the effect of Si-nc size is studied in Er-Si-rich SiO2/SiO2 multilayers. The coupling between Si-nc and Er3+ ions is found to be less efficient when the Si-nc?s reach a size of 5 nm and attributed to a loss of the quantum confinement of carriers. On the other hand, the interaction distance between Si-nc and Er ions is determined through the photoluminescence properties of Si-rich SiO2/Er-SiO2 multilayers. The characteristic interaction distance Si-nc-Er is dependent on the nature of the sensitizers with 0.4 ą 0.1 nm for amorphous Si and 2.6 ą 0.4 nm for Si nanocrystals.
Czasopismo
Rocznik
Strony
21--30
Opis fizyczny
Bibliogr. 27 poz.,
Twórcy
autor
autor
autor
  • SIFCOM, UMR CNRS 6176, Ensicaen 6 Bd Marechal Juin 14050 Caen Cedex
Bibliografia
  • [1] Canham L.T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Applied Physics Letters 57(10), 1990, pp. 1046-8.
  • [2] Shimizu-Iwayama T., Fujita F., Nakao S., Saitoh S., Fujita T., Itoh N., Visiblephotoluminescence in St-implanted silica glass, Journal of Applied Physics 75(12), 1994, pp. 7779-83.
  • [3] Charvet S., Madelon R., Gourbilleau F., R. Rizk, Spectroscopic ellipsometry analyses of sputtered Si/SiO2 nanostructures, Journal of Applied Physics 85(8), 1999, pp. 4032-9.
  • [4] Fernandez B.G., López M., García C., Pérez-Rodríguez A., Morante J.R., Bonafos C, Carrada M., Claverie A., Influence of average size and interface passivation on the spectral emission of Si nanocrystals embedded in Si02, Journal of Applied Physics 91(2), 2002, pp. 798-807.
  • [5] Gourbilleau F., Portier X., Ternon C, Voivenel P., Madelon R., Rizk R., Si-rich/Si02nanostructured multilayers by reactive magnetron sputtering. Applied Physics Letters 78(20), 2001, pp. 3058-60.
  • [6] Zacharias M., Heitmann J., Scholz R., Kahler U., Schmidt M., Blásing J., Size-controlled highly luminescent silicon nanocrystals: a SiO/Si02 superlattice approach, Applied Physics Letters 80(4), 2002, pp. 661-3.
  • [7] Fujii M., Yoshida M., Kanzawa Y., Hayashi S., Yamamoto K., 1.54 urn photoluminescence of Er3* doped into Si02 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to £r'+, Applied Physics Letters 71(9), 1997, pp. 1198-200.
  • [8] Shin J.H., Kim M., Seo S., Lee C, Composition dependence of room temperature 1.54 pm luminescence from erbium-doped silicon:oxygen thin films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition, Applied Physics Letters 72(9), 1998, pp. 1092-4.
  • [9] Chryssou CE., Kenyon A.J., Iwayama T.S., Pitt C.W., Hole D.H., Evidence of energy coupling between Si nanocrystals and Er3* in ion-implanted silica thin films, Applied Physics Letters 75( 14), 1999, pp. 2011-3.
  • [10] Franzó G., Pacifici D., Vinciguerra V., Priolo F., Iacona F., Iacona F., Er3+ ions-Si nanocrystals interactions and their effects on the luminescence properties, Applied Physics Letters 76( 16), 2000, pp. 2167-9.
  • [11] Kik P., Brongersma M.L., Polman A., Strong exciton-erbium coupling in Si nanocrystal-doped Si02, Applied Physics Letters 76(17), 2000, pp. 2325-7.
  • [12] Fujii M., Yoshida M., Hayashi S., Yamamoto K., Photoluminescence from Si02 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er3+, Journal of Applied Physics 84(8), 1998, pp. 4525-31.
  • [13] Priolo F., Franzó G., Pacifici D., Vinciguerra V., Iacona F., Irrera A., Role of the energy transfer in the optical properties of undoped and Er-doped interacting Si nanocrystals, Journal of Applied Physics 89(1), 2001, pp. 264-72. [14] Kenyon A.J., Chryssou C.E., Pitt C.W., Shimizu-Iwayama T., Hole D.E., Sharma N., Humphreys C.J., Luminescence from erbium-doped silicon nanocrystals in silica: Excitation mechanisms, Journal of Applied Physics 91(1), 2002, pp. 367-74.
  • [15] Franzó G., Boninelli S., Pacifici D., Priolo F., Iacona F., Bongiorno C, Sensitizing properties of amorphous Si clusters on the 1.54 pm luminescence of Er in Si-rich Si02, Applied Physics Letters 82(22), 2003, pp. 3871-3.
  • [16] Timoshenko Yu.V., Lisachenko M.G., Kamenev B.V., Shalygina O.A., Kashkarov P.K., Heitmann J., Schmidt M., Zacharias M., Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/Si02 superlattice structures, Applied Physics Letters 84(14), 2004, pp. 2512-4.
  • [17] Kimura T., Isshiki H., Ide S., Shimizu T., Ishida T., Saito R., Suppression of Auger deexcitation and temperature quenching of the Er-related 1.54 pm emission with an ultrathin oxide interlayer in an Er/SiO,/Si structure, Journal of Applied Physics 93(5), 2003, pp. 2595-601.
  • [18] Jhe J.H., Shin J.H., Kim K.J., Moon D.W., The characteristic carrier-Er interaction distance in Er-doped a-Si/Si02 superlattices formed by ion sputtering, Applied Physics Letters 82(25), 2003, pp. 4489-91.
  • [19] Ternon C, Dufour C, Gourbilleau F., Rizk R., Roles of interfaces in nanostructured silicon luminescence, European Physical Journal B 41(3), 2004, pp. 325-32.
  • [20] Lockwood D.J., Grom G.F., Tsybeskov L., Fauchet P.M., Labbe H.J., McCaffrey J.P., White B., Self-organization and ordering in noncrystalline Si/Si02 superlattices, Physica E: Low-Dimensional Systems and Nanostructures 11(2-3), 2001, pp. 99-103.
  • [21] Ran G.Z., Chen Y., Yuan F.C., Qiao Y.P., Fu J.S., Ma Z.C., Zong W.H., Qin G.G., An effect of Si nanoparticles on enhancing Er3* electroluminescence in Si-rich Si02:Er films, Solid State Communications 118(11), 2001, pp. 599-602.
  • [22] Gourbilleau F., Levalois M., Dufour C, Vicens J., Rizk R., Optimized conditions for an enhanced coupling rate between Er ions and Si nanoclusters for an improved 1.54 pm emission, Journal of Applied Physics 95(7), 2004, pp. 3717-22.
  • [23] Michel J., Benton J.L., Ferrante R.F., Jacobson D.C., Eaglesham D.G., Fitzgerald E.A., Xie Y.-H., Poate J.M., Kimerling L.C., Impurity enhancement of the 1.54 pm Er3* luminescence in silicon, Journal of Applied Physics 70(5), 1991, pp. 2672-8.
  • [24] Kik P.G., de Dood M.J.A., Kikoin K., Polman A., Excitation anddeexcitation of EiJ+ in crystalline silicon, Applied Physics Letters 70(13), 1997, pp. 1721-3.
  • [25] Priolo F., Franzo G., Coffa S., Carnera A., Excitation and nonradiative deexcitation processes of Er3* in crystalline Si, Physical Review B 57(8), 1998, pp. 4443-55.
  • [26] Suchocki A., Langer J.M., Auger effect in the Mn2+ luminescence of CdF2:(Mn, Y) crystals. Physical Review B 39(11), 1989, pp. 7905-16.
  • [27] Snoeks E., Kik P.G., Polman A., Concentration quenching in erbium implanted alkali silicate glasses, Optical Materials 5(3), 1996, pp. 159-67.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0102
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.