PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration free laser-induced breakdown spectroscopy (LIBS) identification of seawater salinity

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laser-induced breakdown spectroscopy (LIBS) has been used as a remote sensing system to analyze seawater samples and to identify their salinities without ordinary calibration curves. The plasma is generated by focusing a pulsed Nd : YAG laser on the seawater surface in air at atmospheric pressure. Such plasma emission spectrum was collected using wide band fused-silica optical fiber of one-meter length connected to a portable Echelle spectrometer (Mechelle 7500 ? Multichannel Instruments, Stockholm, Sweden) with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density and electron temperature assuming the local thermodynamic equilibrium (LTE) and optically thin plasma conditions. Three elements Na, Ca and Mg were determined in the obtained spectra to identify the salinity of seawater samples. The electron temperature Te and density Ne were determined using the emission intensity and Stark broadening. The obtained values of Te and Ne for natural seawater sample (salinity 3.753%) are 11580 K ą 0.35% and 3.33×1018 cm?3 ą 14.3%. These values exhibit a significant change only if the matrix changes (i.e., the salinity changes). On the other hand, no significant difference was obtained if Te and Ne were determined using any of the three elements (Na, Ca and Mg) in the same matrix. It is concluded that Te and Ne represent a fingerprint plasma characterization for a given seawater sample and its salinity could be identified using only one element without need to analyze the rest of elements in the seawater matrix. The obtained results indicate that it is possible to improve the exploitation of LIBS in the remote on-line environmental monitoring, by following up only a single element as a marker to identify the seawater matrix composition and salinity without need to analyze that matrix which saves a lot of time and efforts.
Czasopismo
Rocznik
Strony
5--19
Opis fizyczny
Bibliogr. 32 poz.,
Twórcy
autor
autor
  • NILES, Dep. of Enviromental applications, Cairo University Egypt
Bibliografia
  • [1] Min Z.J., Li J.P., Jiang S.H., Measurement of salt salinity in solar pond by supersonic method. Acta Eneglae Solaris Sinica 16(2), 1995, pp. 224-8.
  • [2] Diniz F.B., de Freitas K.C.S., de Azevedo W.M., Salinity measurements with polyaniline matrix coated wire electrodes, Electrochemistry Communications 1(7), 1999, pp. 271-3.
  • [3] Minato H., Kakui Y., Nishimoto A., Nanjo M., Remote refractive index difference meter for salinity sensor, IEEE Transactions on Instrumentation and Measurement 38(2), 1989, pp. 608-12.
  • [4] Zhao Y., Liao Y.B., Novel optical fiber sensor for simultaneous measurement of temperature and salinity, Sensors and Actuators B: Chemical 86(1), 2002, pp. 63-7.
  • [5] Zhao Y., Zhang Bo, Liao Yanbiao, Experimental research and analysis of salinity measurement based on optical techniques, Sensors and Actuators B: Chemical 92(3), 2003, pp. 331-6.
  • [6] Tawfik Y. Mohamed W., Quantitative elemental analysis of seawater by laser induced breakdown spectroscopy. International Journal of Pure and Applied Physics 2(1), 2006, pp. 11-21.
  • [7] Radziemski L.J., Cremers D.A., Laser Induced Plasmas and Applications, Marcel Dekker, New York 1989.
  • [8] Soliman M., Tawfik W., Harith M.A., Quantitative elemental analysis of agricultural drainage water using laser induced breakdown spectroscopy, [In] First Cairo Conference on Plasma Physics and Applications, Cairo, Egypt, Forschungszentrum Juelich GmbH, Bilateral Seminars of the International Bureau, Vol. 34, 2003, pp. 240-3.
  • [9] Tawfik Y. Mohamed W., Askar A., Study of the matrix effect on the plasma characterization of heavy elements in soil sediments using LIBS with a portable Echelle spectrometer, Progress in Physics 1, 2007, pp. 46-52.
  • [10] Mohamad Sabsabi, Vincent Detalle, Mohamed A. Harith, Walid Tawfik, Hisham Imam, Comparative study of two new commercial Echelle spectrometers equipped with intensified CCD for analysis of laser-induced breakdown spectroscopy, Applied Optics 42(30), 2003, pp. 6094-8.
  • [11] Ismail M.A., Imam H., Elhassan A., Tawfik Y. Mohamed W., Harith M.A., LIBS limit of detection and plasma parameters of some elements in two different metallic matrices, Journal of Analytical Atomic Spectrometry 19(4), 2004, pp. 489-94.
  • [12] Charfi B., Harith M.A., Panoramic laser-induced breakdown spectrometry of water, Spectrochimica Acta Part B: Atomic Spectroscopy 57(7), 2002, pp. 1141-53.
  • [13] Arca G., Ciucci A., Palleschi V., Rastelli S., Tognoni E., Trace element analysis in water by laser-induced breakdown spectroscopy technique, Applied Spectroscopy 51(8), 1997, pp. 1102-5.
  • [14] Fichet P., Mauchien P., Wagner J.-F., Moulin C, Quantitative elemental determination in water and oil by laser induced breakdown spectrodcopy, Analytica Chimica Acta 429(2), 2001, pp. 269-78.
  • [15] Samek O., Beddows D.C., Kaiser J., Kukhlevsky S.V., Liska M., Telle H.H., Young J., Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples, Optical Engineering 39(8), 2000, pp. 2248-62.
  • [16] Wisbrun R., Schechter I., Niessner R., Schroeder H., Laser-Induced Breakdown Spectroscopy for Detection of Heavy Metals in Environmental Samples, Vol. 1716, SPIE, Bellingham, Washington, 1992, pp. 2-14.
  • [17] Salle B., Charleard C, Detalle V., Lacour J.L., Mauchien P., Nouvellon C, Semerok A., Laser ablation efficiency of metal samples with UV laser nanosecond pulses, Applied Surface Science 138-139, 1999, pp. 302-5.
  • [18] Bulatov V., Krasniker R., Schechter I., Study of matrix effects in laser plasma spectroscopy by combined multifiber spatial and temporal resolutions, Analytical Chemistry 70(24), 1998, pp. 5302-1 1.
  • [19] Xu L., Bulatov V., Gridin V.V., Schechter I., Absolute analysis of particulate materials by laser -induced breakdown spectroscopy, Analytical Chemistry 69(11), 1997, pp. 2103-8.
  • [20] Goode S.R., Morgan S.L., Hoskins R., Oxsher A., Identifying alloys by laser-induced breakdown spectroscopy with a time-resolved high resolution echelle spectrometer, Journal of Analytical Atomic Spectrometry 15(9), 2000, pp. 1133-8.
  • [21] Eppler A.S., Cremers D.A., Hickmott D.D., Ferris M.J., Koskelo A.C., Matrix effects in the detection of Pb and Ba in soils using laser-induced breakdown spectroscopy, Applied Spectroscopy 50(9), 1996, pp. 1175-81.
  • [22] Ciucci A., Corsi M., Palleschi V., Rastelli S., Salvetti A., Tognoni E., New procedure for quantitative elemental analyses by laser induced plasma spectroscopy, Applied Spectroscopy 53(8), 1999, pp. 960-4.
  • [23] Bulajic D., Corsi M., Cristoforetti G., Legnaioli S., Palleschi V., Solvetti A., Tognoni E., A procedure for correcting self-absorption in calibration-free laser induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy 57(2), 2002, pp. 339-53.
  • [24] Corsi M., Palleschi V., Salvetti A., Tognoni E., Making LIBS quantitative: a critical review of the current approaches to the problem, Research Advances in Applied Spectroscopy 1, 2000, pp. 41-7.
  • [25] Simeonsson J.B., Miziolek A.W., Time-resolved emission, studies of ArF laser-produced micro-plasmas. Applied Optics 32(6), 1993, pp. 939-47.
  • [26] Griem H.R., Plasma Spectroscopy, McGraw-Hill, New York 1964.
  • [27] NIST National Institute of Standards and Technology, USA, electronic database, http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
  • [28] Kurucz Atomic Line Database, http://www.cfa.harvard.edu/amdata/ampdata/kurucz23/sekur.html.
  • [29] Iida Y., Effects of atmosphere on laser vaporization and excitation processes of solid samples, Spectrochimica Acta Part B: Atomic Spectroscopy 45(12), 1990, pp.1353-67.
  • [30] Nemet B., Kozma L., Time-resolved optical emission spectrometry of Q-switched Nd.YAG laser-induced plasmas from copper targets in air at atmospheric pressure, Spectrochimica Acta Part B: Atomic Spectroscopy 50(14), 1995, pp. 1869-88.
  • [31] Kyuseok Song, Hyungki Cha, Jongmin Lee, Yong-Lee, Investigation of the line-broadening mechanism for laser-induced copper plasma by time-resolved laser-induced breakdown spectroscopy, Microchemical Journal 63(1), 1999, pp. 53-60.
  • [32] McWhirter R.W.P., In Plasma Diagnostic Techniques, [Eds.] R.H. Huddlestone, S.L. Leonard, Chap. 5, Academic Press, New York 1965, p. 206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0101
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.