PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Self-spreading high-temperature synthesis of TiB2 powder

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
TiB2/Al2O3 powder composite was synthesized via simultaneous aluminum reduction of TiO2 and B2O3 according to self-spreading high temperature (SHS) reaction in an oxidizing atmosphere. Using controlled atmosphere and high temperature is not necessary in this method. Based on the Taguchi experimental technique, various experiments were carried out and some characteristic parameters were determined. Due to the formation of intermolecular phases between Al2O3 and CaO which are soluble in HCl, CaO powder was added to the starting materials to make pure TiB2. The most appropriate powder was obtained from the materials of stoichiometric composition, purified with an optimum amount of HCl. Characteristics of the produced samples were studied with X-ray diffraction, atomic absorption spectroscopy and particle size analysis.
Wydawca
Rocznik
Strony
719--731
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Malek-e-Ashtar University, P.O. Box 15875, Tehran, I.R. Iran
Bibliografia
  • [1] KANG E.S., JANG C.W., J. Am. Ceram. Soc., 72 (1989), 1868.
  • [2] RICCERI R., MATTEAZZI R., Mater. Sci. Eng. A, 379 (2004), 341.
  • [3] SHI L., GU Y., CHEN L., YANG Z., MA J., QIAN Y., Inorg. Chem. Commun., 7 (2004), 192.
  • [4] SCHNEIDER J., Engineering Materials Handbook, ASM International, 1991.
  • [5] WEIMER A.W., Carbide, Nitride and Boride Materials Synthesis and Processing, Chapman & Hall, London, 1997.
  • [6] MANDORF V., HARTWIG J., SELDIN E.J., High Temperature Deformation of Titanium Diboride, [in:] G.M. Ault (Ed.), High Temperature Materials, Vol. 2, Wiley-Interscience, New York, 1963, p. 455.
  • [7] BAIK S., BECHER P.F., J. Am. Ceram. Soc., 70 (1987), 527.
  • [8] CAPUTO A.J., LACKEY W.J., J. Electrochem. Soc., 132 (1985), 2274.
  • [9] BAUMGARTNER H.R., STEIGER R.A., J. Am. Ceram. Soc., 67 (1984), 207.
  • [10] LOGAN K.V., U.S. Patent 5 160 716, 1992.
  • [11] CHEN L., GU Y., QIAN Y., SHI L., YANG Z., MA J., Mater. Res. Bull., 39 (2004), 609.
  • [12] LOGAN K.V., U.S. Patent 4 888 166, 1989.
  • [13] MOSSINO P., DEORSOLA F.A., VALLAURI D., AMATO I., Ceram. Int., 30 (2004), 2229.
  • [14] ANDRIEUX J.L., PEFFEN R., U.S. Patent 3 016 288, 1962.
  • [15] YI ET AL., U.S. Patent, 6 645 424, 2003.
  • [16] LOGAN K.V., WALTON J.D., Ceram. Eng. Sci. Proc., 5 (1984), 712.
  • [17] WALTON J.D., POULOS N.E., J. Am. Ceram. Soc., 42 (1959), 40.
  • [18] MERIC C., ENGEZ T., Welding J., Jan. (1999), 33.
  • [19] GEIGER M.J., POIRIER D., Welding J., 61 (1999), 260.
  • [20] WALKER J.K., Adv. Ceram. Mater., 3 (1988), 601.
  • [21] WEIMER A.W., MOORE W.G., ROACH R.P., HITT J.E., DIXIT R.S., J. Am. Ceram. Soc., 75 (1992), 2509.
  • [22] TIMMS P.L., U. S. Patent 3 351 429, 1967.
  • [23] LEE W.E., Ceramic Microstructure, Chapman & Hall, New York, 1994.
  • [24] GITZEN W., Alumina as a Ceramic Material, The American Ceramic Society, Columbus, OH, 1970.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0083
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.