PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulated geometry of open-end single-wall carbon nanotubes with adsorbed long-chain normal alkanes and resulting implications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Successful designing and computation of optimized, large (up to 10 000 atoms), complex structures of isomeric zigzag, armchair, and chiral open-end single-wall carbon nanotubes (SWCNTs) with normalchain C8, C16, C40, C80, and C96 hydrocarbons was performed by means of HyperChem 7.0 (Molecular Dynamics and Molecular Mechanics MM+) and Gaussian 03 (Molecular Mechanics UFF) programs. The diameter of the nanotubes was around 0.4, 0.7, 0.9, 1.1, 1.3, and 1.7 nm. Octane and hexadecane positioned themselves on the nanotube surfaces in the manner influenced by the pattern of the carbon atoms in the tubes, i.e., in the manner dependent on the isomerism of the nanotubes. Longer-chain hydrocarbons usually coiled around the nanotubes, unless they were 0.4 nm in diameter. In such cases a kind of clipshape arrangement of the hydrocarbons on the nanotube surface was noted instead of coiling. The numbers of carbon atoms in one full turn of the hydrocarbon chain coiling around the SWCNT increased with the diameter of the nanotubes, corresponding to 35, 46, 52, and 64 carbon atoms for 0.7, 1.1, 1.3 and 1.7 nm diameter nanotubes, respectively. However, the comparison of the energy of complexation calculated per one carbon atom of the alkane chain adsorbed on the nanotube surface suggests that in some cases, complexation of long-chain normal hydrocarbons to the carbon nanotube could result in the separation of those nanotubes according to their diameter.
Wydawca
Rocznik
Strony
679--686
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
autor
  • Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
Bibliografia
  • [1] BANERJEE S., HEMRAJ-BENNY T., WONG S.S., J. Nanosci. Nanotechnol., 5 (2005), 841.
  • [2] MAO Z., SINNOTT S.B., J. Phys. Chem., 194 (2000), 4618.
  • [3] TALAPATRA S., ZAMBANO A.Z., WEBER S.E., MIGONE A.D., Phys. Rev. Lett., 85 (2000), 138.686 L. STOBIŃSKI et al.
  • [4] MURIS M., DUFAU N., BIENFAIT M., DUPONT-PAVLOVSKY N., GRILLET Y., PALMARI J., Langmuir, 16 (2000), 7019.
  • [5] BIENFAIT M., ASMUSSEN B., JOHNSON M., ZEPPENFELD P., Surf. Sci., 460 (2000), 243.
  • [6] VALENTINI L., ARMENTANO I., LOZZI L., SANTUCCI S., KENNY J.M., Mater. Sci. Eng., C 24 (2004), 527.
  • [7] MAO Z., SINNOTT S.B., J. Phys. Chem. B, 105 (2001), 6916.
  • [8] JIANG J., SANDLER S.I., SCHENK M., SMIT B., Phys Rev., 72 (2005), 045447.
  • [9] JIANG J., SANDLER S.I., SMIT B., Nano Lett., 4 (2004), 241.
  • [10] JIANG J., SANDLER S.I., J. Chem. Phys., 124 (2006), 024717.
  • [11] BHIDE S.Y., YASHONATH S., J. Am. Chem. Soc., 125 (2003), 7425.
  • [12] JIANG J., SANDLER S.T., Fluid Phase Equil., 228 (2005), 189.
  • [13] BITTNER E.W., SMITH M.R., BOCKRATH B.C., Carbon, 40 (2003), 1231.
  • [14] AGNIKOTRI S., ROOD M.J., ROSTAN-ABADI M., Carbon, 43 (2005), 2379.
  • [15] SUPPLE S., QUIRKE N., J. Chem. Phys., 121 (2005), 8571.
  • [16] LI Q.L., YUAN D.X., LIN Q.M., J. Chromatogr. A, 1026 (2004), 283.
  • [17] HILDING J., GRULKE E.A., SINNOTT S.B., QIAN D., ANDREWS R.R., JOGTOYEN M., Langmuir, 17 (2001), 7540.
  • [18] KOSTOV M.K., CHENG H., COOPER A.C., PEZ G.P., Phys. Rev. Lett., 89 (2002), 146105.
  • [19] TANG Z.K., ZHANG L., WANG N., ZHANG X.X., WEN G.H., LI G.D., WANG J.N., CHAN C.T., SHENG P., Science, 292 (2001), 2462.
  • [20] SUN H.D., TANG Z.K., CHEN J., LI G., Appl. Phys. A, 69 (1999), 381.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0007-0079
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.