PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioremediacja gruntów zanieczyszczonych związkami ropopochodnymi z terenu rafinerii metodą biopryzmy

Autorzy
Identyfikatory
Warianty tytułu
EN
Bioremediation of petroleum contaminated soils from the refinery by biopile
Języki publikacji
PL
Abstrakty
PL
Przedstawiono oczyszczanie gruntów zanieczyszczonych związkami ropopochodnymi metodą biopryzmy, ze szczególnym uwzględnieniem mikrobiologicznych i toksykologicznych aspektów procesu. Zastosowanie niektórych parametrów technologicznych sposób napowietrzania, wprowadzenie substancji biogennych (NPK) oraz substancji powierzchniowo czynnych, jak również aplikacja szczepionki mikrobiologicznej wpłynęło na szybkość i efektywność procesu oczyszczania. Zaadaptowanie i wykorzystanie metod mikrobiologicznych tradycyjnych i badań molekularnych, w tym analizy PCR w skali technicznej umożliwiło właściwą charakterystykę mikroorganizmów uczestniczących w biodegradacji związków ropopochodnych, z uwzględnieniem zwłaszcza bakterii produkujących biologiczne SPC. Zastosowany w pracy schemat oparty na parametrach fizyczno-chemicznych, mikrobiologicznych (aktywność dehydrogenaz, pomiary respirometryczne aparatem MicroOxymax oraz oznaczenie ogólnej liczby mikroorganizmów metodami fluorescencyjnymi) i ekoloksykoiogicznych, obejmujących zestaw testów genotoksyczności i fitotok-syczności, okazał się przydanym narzędziem do oceny efektywności i skuteczności procesu oczyszczania, zarówno w gruntach, jak i odciekach. Po dwóch lalach procesu bioremediacji gruntu stężenie węglowodorów ropopochodnych spadło o 81%. Kombinacja aktywnego napowietrzania, biostymulacji i bioaugmentacji zapewniła zwiększenie szybkości i wydajności procesu. Pasywne napowietrzanie pozwoliło zredukować koszty, ale wydłużało czas bioremediacji z 3 do 5 miesięcy. Z oczyszczanych gruntów wyizolowano około 200 szczepów bakterii, drożdży i grzybów strzępkowych. Do ich identyfikacji i określenia zależności filo-genetycznych zastosowano analizę sekwencyjną fragmentu DNA kodującegol6S rRNA. Szczególną uwagę zwrócono na bakterie, które miały dwie istotne cechy, tj. produkowały biosurfaktanty oraz charakteryzowały się dużą zdolnością do biodegradacji węglowodorów ropopochodnych, zarówno alifatycznych, jak i aromatycznych, ze względu na ich przyszłe aplikacje w innych technologiach biorę mediacyjnych, zarówno gruntów, jak i ścieków zanieczyszczonych produktami ropopochodnymi.
EN
More than a century of continuous use of a sulphuric acid-based oil refming method by the Czechowice Oil Refinery in Poland produced an estimated 120,000 tons of acidic, highly weathered, petroleum sludge. This waste was deposited into three open waste lagoons of 3 meters in depth and of a total area of 3.8 hectares. One of the waste lagoons was chosen for a demonstration study on an aerobic biopile, based on physicochemical, microbiological and ecoloxicological characlerization. The biopile with actively and passively aerated sections was constructed in 1997 in the smallest lagoon (0.3 hectares) at the Czechowice Oil Refinery. The waste from the lagoon was removed, and 5000 tons of petroleum-contaminated soils were treated in tne bioremediation process. Numerous COCs (contaminants of concern) werc present at this site, but the petroleum hydrocarbons were the main concern. A simple and cost-effective ex situlon-site bioremediation technotogy was designed. The purpose of this study was to clean up petroleum contaminated soils. The project focused on the application of cost-effective amendments for biostimuiation, including NPK fertilizers, the surfactant Rokafenol N8, and employing an indigenous microbial consortium for an enhanced hydrocarbon biodegradation. Over the 20 month project, morę than 81% (120 metric tones) of petroleum hydrocarbons were biodegraded. The highest decrease of TPH (58%) and TPOC (49%) concentrations was ob-served in the first stage of bioremediation process in the biopile. The concentrations of TPH and all PAHs were below the Polish risk guidelines. This fuli scalę demonstration simultaneously remediated contaminated soil to acceptable harmfulness levels and created a permanent green zone that has great public acceptance and greatly reduces the overall risk of the refinery to the city. A restored green area with lush vegetation including grass and trees now covers the surface of the biopile. The costs of bioremediation processes were significantly lower when compared with other bioremediation treatment processes. Degradation of organie polkitants would be enhanced by improving the intrinsic limiling factors or by changing the environmental extrinsic conditions to promote the enzymatic capacity of the indigenous microbial community. Based on the results obtained, biodegradation rates mainly depended on the activity of degrading microorganisms, bioremediation time period, and concentration and type of contaminants. In the present study, the battery of the following bioassays: Spirotox, MicrotoxŽ, Toxkits, umu-test and SOS-chromotest and plant assays were applied to evaluate efficiency of bioremediation process in petroleum contaminated soils. Six higher plant species (Secale cereale, L., Lactuca sativa L., Zea mays L., Lepidium sativum L., Triticum vulgare L., Brassica olera-cea L.) were used for bioassay tests based on seed germination and rool elongation. The bioassays were presented to be sensitive indicators of soil qua!ity and can be used to evaluate the ąuality of bioremediated soil. The ecotoxicological research revealed that there were no toxic and genotoxic substances in the soil from biopile after 4 years of treatment. However, the umu test was morę sensitive than the SOS chromotest in the analysis of petroleum hydrocarbon-bioremediated soil. Analytical results of soil used in the bioassyas confirmed that the bioreme diation process reduced 81% of the petroleum hydrocarbons. The study encourages the need to combine the bioassays with chemical and microbiological parameters for evaluation of the bioremediation effectiveness and assessing the contaminated/remediated soils. Microbial diversity in hydrocarbon-contaminated soils was characterized during a Polish refinery bioremediation project. A total of 200 bacteria, fungi, and yeast were isolated from contaminated soils utilizing a combination of culturedependeni and independent approaches. Among isolated strains, Pseudomonas, Chryseomonas, Sphingomonas and Stenotrophomonas genera prcdominated in the bacterial population, while Candida, Exophiata and Fusańum dominated in fungal population. The isolates were then screened to determine hydrocarbon biodegradation potcntial for use as biomarkers in future monitoring of natural attenuation. Molecular approaches including 16S rDNA gene analysis were used to identify the bacterial strains. They were mainly found to be within Proteobacteria. Isolates were found to be most closely related to Ralstonia, Pseudomonas, Stenotrophomonas, and Achromobacier, Alcaligenes and Microbacteńum species. Selected bacterial strains had the abilily of producing biosurfactants in the presence of petroleum compound and biodegrading a variety of petroleum hydrocarbons including aromatic hydrocarbons. Among them, Alcaligenes piechaudii SRS, Ralstonia pickettii SRS, and Pseudomonas pulida biotype B SRS demonstrated the ability to produce biosurfactants as well as degrade a wide range of the petroleum compounds. The microbial diversity of the soils at this site contributed to the successful bioremediation of the hydrocarbons. The combination of molecular and traditional microbiological culture tecbniques are useful tools for evaluating microbial diversity in the petroleum contaminated soils.
Słowa kluczowe
Twórcy
autor
  • Pracownia Mikrobiologii Środowiska, Zakład Biotechnologii Środowiskowych. Instytut Ekologii Terenów Uprzemysłowionych, ul. Kossutlui 6. 40-844 Katowice
Bibliografia
  • Abu-Ruwaida A.S., Banat I.M., Haditirto S., Salem A., Kadri M., 1991, Isolation of biosurfactant-producing bacteria. Product characterization and evaluation. Acta Biotechnol. 11, 315-324.
  • Alef K., 1996. Dehydrogenase activity. In: Methods in Applied Soil Microbiology and Biochemistry. Alef K.. Nannipieri P. (eds.). Academic Press, Harcourt Brace & Company, London-Toronto, 228-230.
  • Alexander M., 1999. Biodégradation and Bioremediation. Academic Press, San Diego.
  • Altman D.J., Hazen T.C., Tien A., Lombard K.H., Worsztynowicz A., 1997, Czechowice Oil Refinery Bioremediation Demonstration Test Plan, WSRC-MS-97-21H Westinghouse Savannah River Company, Aiken, S.C. DOE-NITS.
  • Alvarez-Cohen L., 1993, Engineering challenges of implementing in situ bioremediation. University of California, Berkeley, California. Amann R.J., Ludwig W., Schleifar K-H., 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.
  • Arx von J.A., 1986, The ascomycete genus Gymnoascus. Persoonia, 13, 173-183.
  • Atlas R.M., 1981, Microbial degradation of petroleum hydrocarbons; an environmental perspective. Microbial. Rev. 45, 180-209. Atlas R., 1984, Petroleum microbiology. McGraw-Hill, New York.
  • Atlas R.M., Bartha R., 1992, Hydrocarbon biodégradation and oil spill bioremediation. Adv. Microbiol. Ecol., 12, 287-338.
  • Atlas R.M., 1998, Bioremediation. Materiały z kursu: ,,Remediation technologies: new trends and tools for soil decontamination", IETU, Katowice.
  • Atlas R., Bartha R., 1998,Microbial Ecology. Fundamentals and Applications. Benjamin/Eummings Science Publishing.
  • Bai G.. Brusseau M.L., Mille R.M., 1997, Biosurfactant-enhanced removal of residual hydrocarbon from soil. J. Cont. Hydrol. 25, 157-170.
  • Banat I.M.. 1995a. Characterization of biosurfactants and their use in pollution removal - state of the art. (review). Acta Biotechnol. 15, 251-267.
  • Banat I.M., 1995b, Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Biores. Technol. 51, 1-12.
  • Banat I.M., Makkar R.S., Cameotra S.S., 2000, Potential commercial applications of microbial; surfactants. Appl. Microbiol. Biotechnol. 53, 495-508.
  • Bartha R., 1986, Biotechnology of petroleum pollutant biodégradation. Microbiol. Ecol. 12, 155-172.
  • Bauer E., Pennerstorler C, Holuber P., Plas C, Braun P., 1992, Microbial activity measurement in soil: a comparison of methods. J. Microb. Methods 14, 109-117.
  • Baun A., Jensen S.D., Bjerg P.L., Christensen T.H., Nyholm N., 2000, Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grindsted, Denmark). Environ. Sci. Technol. 34, 1647-1652.
  • Beaudette L.A. Cassidy M.B., England L., Kirk J.L., Habash M., Lee H., Trevors J.T., 2002, Bioremediation of soil. In: Encyclopedia of Environmental Microbiology, Vol. 2. Wiley, New York, 722-737.
  • Beilen J.B., Li Z., Duetz W.A., Smits T.H.M., Witholt B., 2003, Diversity of alkane hydroxylase systems in the environment. Oil Gas Sc. Technol. 58,427-440.
  • Belgis C, Persoone G.. 2005, Cyst-based toxicity tests XVII - Prefeeding advantages in short-chronic rotifer microbial'est's. Ecotox. Environ. Saf. 60, 73-80.
  • Bento F.M.. Camargo F.A., Okeke B.C.. Frankenberger W.T., 2005. Diversity of biosurfactant producing microorganisms isolated from soils contaminated with diesel oil. Microbiol. Res. 160, 249-255.
  • Bispo A.. Jourdain MJ., Jauzein M.. 1999. Toxicity and genotoxicity of industrial soils polluted by polycyclic aromatic hydrocarbons (PAHs). Organic Geochemistry 30. 947-952.
  • Bodour A.A., Miller-Maier R.M., 1998, Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J. Microb. Methods 32, 273-280.
  • Bodour A.A., Maier R.M., 2002, Biosurfactants: types, screening methods and application. In: Encyclopedia of Environmental Microbiology, Vol. 2. Wiley, NY, 750-769.
  • Bodour A.A., Drees K.P., Maier R.M., 2003, Distribution of biosurfactant-producing bacteria in undisturbed and contaminated Arid Southwestern soils. App. Environ. Microbiol. 69, 3280-3287. Bognolo G., 1999, Biosurfactants as emulsifying agents for hydrocarbons. Coll. Surf. 152,41-52.
  • Bollag W.B., Dec J., Bollag J.M., 2000, Biodégradation. In: Encyclopedia of Microbiology, Vol. 1. 2nd ed. Academic Press, 461-471.
  • Bosch M.P., Robert M., Mercade M.E., Espuny M.J., Parra J.L., Guinea J., 1988, Surface-active compounds on microbial cultures. Tenside Surfactants Deterg. 25, 208-211.
  • Bosch R., Garcia-Valdes E., Moore E.R.B., 2000, Complete nucleotide sequence and evolutionary significance of a chromosomally encoded naphthalene-degradation lower pathway from Pseudomonas stutter AN 10. Gene 245, 65-74.
  • Bossert I., Bartha R., 1984. The fate of petroleum in soil ecosystems. In: Petroleum microbiology. Atlas R.M. (ed.), Macmillan Publishing Co., NY, 434-476.
  • Bouwer E., Durant N., Wilson L., Zhang W„ Cunningham A., 1994, Degradation of xenobiotic compounds in situ: capabilities and limits. FEMS Microbiol. Rev. 15, 307-317.
  • Braud-Grasset F., Baud-Grasset S., Safferman S.I., 1993, Evaluation of the bio remediation of a contaminated soil with phytotoxicity tests. Chemosphere 26, 1365-1374.
  • Brigmon R.L., Camper D., Stutzenberger F., 2002, Bioremediation of compounds hazardous to health and the environment - an overview. In: Singh V.P. (ed.), Biotransformations: Bioremediation
  • Technology for Health and Environmental Protection. Elsevier, The Netherlands, 1-28.
  • Bruheim P., Bredholt H., Eimhjellen K., 1997, Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can. J. Microbiol. 43, 17-22.
  • Bryant R.S., 1987, Potential uses of microorganisms in petroleum recovery technology. Proc. Okla. Acad.Sci. 67, 97-104.
  • Cameotra S.S., Makkar R.S., 1998, Synthesis of biosurfactants in extreme conditions. Appl. Microbiol. Biotechnol. 50, 520-529.
  • Cano J.F., Guarro J., 1990, The genus Aphanoascus. Mycological Research 94, 355-377.
  • Carrillo P.G, Mardaraz C, Pitta-Alvarez S.J., Giulietti A.M., 1996, Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12, 82-84.
  • Cerniglia C.E., 1984a, Microbial transformation of aromatic hydrocarbons. In: Petroleum Hydrocarbons, Atlas R.M.. Macmillan B. (eds.), London, 99-128.
  • Cerniglia C.E., 1984b. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30, 31-71.
  • Cerniglia CE., Heitkamp M.A., 1989, Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. In: Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. Varanasi U. (ed.) CRC Press, Boca Raton, FL, USA, 41-68.
  • Champ M.A., Nordvik A.B., Simons I.J., 1997, Utilization of technology windows of opportunity in marine oil spill contingency planning. Response and windows. In: The 1997 International Oill Sill
  • Conference. American Petroleum Institute, Washington, D.C., 993-994.
  • Chial B., Persoone G., 2002, Cyst-based toxicity tests XIII - Development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens. Methodology and precision. Environ. Toxicology 17, 528-532.
  • Chial B., Persoone G, 2003, Cyst-based toxicity tests XV. Application of the ostracod solid-phase microbiotest for toxicity monitoring of contaminated soils. Environ. Toxicology 18, 347-352.
  • Christofi N., Ivshina I.B., 2002, Microbial surfactants and their use in field studies of soil remediation. J. App. Mirobiol., 93, 915-929.
  • Churchill P.F., Dudley R.J., Churchill S.A., 1985, Surfactant-enhanced bioremediation. Waste Manag. 15,371-377.
  • Citterio S., Aina R., Labra M., Ghiani A., Fumaglli P., Sgorbati S., Santagostino A., 2002, Soil genotoxicity assessment: a new strategy based on biomolecular tools and plant bioindicators. Environ. Sci. Technol. 36, 2748-2753.
  • Coates J.D., Woodward J., Allen J., Philp P., Lovley D.R., 1997, Anaerobic degradation of PAHs and alkanes in petroleum-contaminated marine harbor sediments. App. Environ. Microbiol. 63, 3589-3593.
  • Cooper D.G., Zajic J.E., 1989, Surface-active compounds from microorganisms. Ad. Appl. Microbiol. 26, 229-253.
  • Coschigano P.W., Young L.Y., 1997, Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain Tl. App. Environ. Microbiol. 63, 652-660. Cowan D.A., 2000, Microbial genomes - the untapped resource. Trends Biotech. 18, 14—16.
  • Currah R.S., 1985, Taxonomy of the Onygenales: Arthrodermataceae, Gymnoascaceae, Myxotrichaceae and Onygenaceae. Mycotaxon, 24, 1-216. Das M.,
  • Das S.K., Mukherjee R.K., 1998, Surface active properties of the culture filtrates of a Micrococcus species grown on n-alkanes and sugars. Biores. Technol., 63, 231-235.
  • DECHEMA, 2001, .Methods for toxicological/ecotoxicological assessment of soil. 7lh Report of the interdisciplinary DECHEMA committee "Environmental Biotechnology - Soil", Frankfurt am Main, Germany.
  • Debus R., Hund K., 1997, Development of analytical methods for the assessment of ecotoxicological relevant soil contamination. Part B: Ecotoxicological analysis in soil and soil extracts.Chemosphere 35, 238-261.
  • Deleu M., Paquot M., 2004, From renewable vegetables resources to microorganisms: new trends in surfactants. C. R. Chimie 7, 641-646. Desai J.D., Desai A.J., 1993, Production of biosurfactant. Marcel Dekker Inc., New York, 48, 65-97.
  • Desai J.D., Banat I.M., 1997, Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61,47-64
  • Dębicki R., Gliński J., 1999, Międzynarodowa konwencja o ochronie gleb. Instytut Agrofizyki PAN, TEKS s.c, Lublin.
  • Dinamarca M.A., Aranda-Olmedo I., Puyet A., Rojo F.. 2003, Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: Evidence from continuous cultures. J. Bacteriol. 185, 4772-4778.
  • Domsch K.H., Gams W., Traute-Heidi A., 1980, Compendium of Soil Fungi. Academic Press, London-San Francisco.
  • Dorn P.B., Vipond T.E., Salanitro J.P., Wiśniewski H.L., 1998, Assessment of the acute toxicity of crude oils in soils using earthworms, microtox®, and plants. Chemosphere 37, 845-860.
  • Dorn P.B., Salanitro J.P., 2000, Temporal ecological assessment of oil contaminated soils before and after bioremediation. Chemosphere 40, 419-426.
  • Drobnik J., 1999, Genetically modified organisms (GMO) in bioremediation and legislation. Int. Biodeter. Biodegrad. 44, 3-6. Dubey K., Juwarkar A., 2001, Distillery and curd whey wastes as viable alternative sources for biosurfactant productions. World J. Microb. Biotechnol. 17, 61-69.
  • Dunn N., Gunsalus I.C., 1973, Transmissable plasm ids coding early enzymes of naphthalene oxidation In Pseudomonas putida. J. Bacteriol. 114, 974-979.
  • DuPont R.R., Bruell C.J., Downey D.C., Huling S.G., Marley M.C., Norris R.D., Pivetz B., 1998, Innovative site remediation technology design and applications: Bioremediation. Anderson W.C (ed.). American Academy of Environmental Engineers, Annapolis.
  • Dyrka W., 1997, Rozwój i zmiany w branży paliwowej w Polsce. Nafta-Gaz, 53, 553-563.
  • Ehrlichman H., Dott W., Eisentraeger A., 2000, Assessment of the water-extract able genotoxic potential of soil samples from contaminated sites. Ecotoxicol. Environ. Safety 46, 73-80.
  • Elsas van J.D., Trevors J.T., Wellington E.M.H., 1997, Modern Soil Microbiology. Marcel Dekker, Inc., NY.
  • Elsas van J.D., Duarte G.F., Rosado A.S., Smalla K., 1998, Microbiological and molecular biological methods for monitoring microbial inoculunts and their effects in the soil environment. J. Microbiol. Methods, 32, 133-154.
  • Encyclopedia of Microbiology, 2000, Vol. 1, 2nd edition, Academic Press.
  • Feienstein J., 1989, PHYLIP- Phytogeny inference package (version 3.2). Cladistics 5.
  • Fiechter A., 1992, Biosurfactants: moving towards industrial application. TIBTECH 10, 208-217.
  • Flathman P., Jerger D.E., Exner J.H., 1994, Bioremediation field experience. Lewis Pub. Inc., Boca Raton, London.
  • Flemming J.T., Sanseverino J., Sayler G.S., 1993, Quantitative relationship between naphtahalene catabolic gene frequence and expression in predicting PAH degradation in soils at town gas manufacturing sites. Environ. Sei. Technol. 27, 1068-1074.
  • Flemming J.T., Sayler G.S., 1995, Assessment of gene expression in the environment: quantitative mRNA analysis in contaminated soil. In: Minear R.A., Ford A.M., Needham L.L., Karch N.J. (eds.) Molecular Biology in Environmental Chemistry, CRC Press Inc., 45-48.
  • Floodgate G., 1989, The fate of petroleum in marine ecosystems. In: Petroleum microbiology. Atlas R.M. (ed.). Macmillan Publishing Co., NY, 355-398.
  • Foght J.M., Gutnick D.L., Westlake D.W.S., 1989, Effect of emulsan on biodégradation of crude oil by pure and mixed bacterial cultures. Appl. Environ. Microbiol. 55,.36—42.
  • Fritsche W., Hofrichter M., 2005, Aerobic degradation by microorganisms. In: Environmental Biotechnology. Jordening H.J., Winter J. (eds.). Wiley VCH Verlag, 146-164.
  • Furlong M.A., Singleton D.R., Coleman D.C., Whitman W.B., 2002, Molecular and culture-based analyses of pro kary o tic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl. Environ. Microbiol. 68, 1265.
  • Gerhardt P., 1981, Manual of Methods for General Bacteriology, American Society for Microbiology, Washington. DG 20006.
  • Gierak A.. 1994. Zagrożenie środowiska produktami ropopochodnymi. Gospodarka Paliwami 2, 51.
  • Girling A.E.. Pascoe D., Janssen CR., Peither A.. Wenzel A.. Schäfer H., Neumeier B.. Mitchell G.C., Taylor E.J., Maund S.J., Lay J.P., Juttner I., Crossland N.O.. Stephenson R.R., Persoone G.. 2000, Development of methods for evaluating toxicity to freshwater ecosystems. Ecotox. Environ. Saf. 45, 148-176.
  • GIOŚ 1994, Główny Inspektorat Ochrony Środowiska, Identyfikacja i wycena szkód ekologicznych spowodowanych przez stacjonujące wojska Federacji Rosyjskiej. Raport końcowy. Elwoj-Trio, Warszawa.
  • Gong P., Wilke B.M., Strozzi E., Fleischmann S., 2001, Evaluation and refinement of a continuous seed germination and early seedling growth test for use in the ecotoxicological assessment of soils. Chemosphere 44, 491-500.
  • Greene J.C., Bartels CL, Warren-Hicks W.J., Parkhurst B.R., Linder G.L., Peterson S.A., Miller W.E., 1988, Protocols for short term toxicity screening of hazardous waste sites. EPA/600/3-88/029. U.S.EPA, Corvallis, OR.
  • Guarro J., Cano J., de Vroey Ch., 1991, Nannizziopsis (Ascomycotina) and related genera. Mycotaxon, 42,193-200.
  • Gunther P., Pestemer W., 1990, Risk assessment for selected xenobiotics by bioassay methods with higher plants. Environ. Manage. 14, 381-388.
  • Gunther N.W., Nunez A., Fett W., Solaiman D.K.Y., 2005 Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Applied Environmental Microbiology 71, 2288-2293.
  • Gworek B., 2004, Technologie rekultywacji gleb. Instytut Ochrony Środowiska, Warszawa.
  • Haigh S.D.. 1996, A review of the interaction of surfactants with organic contaminants in soil. Sei. Tot. Environ. 185. 161-170.
  • Hamann C, Hegemann J., Hildebrandt A., 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173, 255-263.
  • Hamme van J.D., Singh A., Ward O.P., 2003, Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67, 503-549. Hankin L., Zucher M., Sands DC, 1971, Improved solid medium for the detection and enumeration of pectolytic bacteria. Appl. Microbiol. 22, 205-209.
  • Hankin L., Anagnostakis S.L., 1975, The use of solid media for detection of enzyme production by fungi. Mycologia 67, 597-607.
  • Hazen T.C., 1997, Bioremediation in microbiology of the terrestrial subsurface. Amy P., Haldeman D. (eds.). CRC Press, Boca Raton, FL, 247-266.
  • Head I.M., Singleton I., Milner M.G., 2003, Bioremediation. A critical review. Horizon Scientific Press, Wymondham, UK.
  • Heider J., Fuchs G., 1997, Microbial anaerobic aromatic metabolism. Anarobes 3, 1-22.
  • Hinchee R.E., 1995, Applied bioremediation of petroleum hydrocarbons. Hinchee R.E., Kittel J.A., Reisinger H.J. (eds.). Battelle Press, Columbus.
  • Holt J.G., Krieg N.R., Sneath P.H.A., Staley J.T., Williams ST., 1994, Bergey's Manual of Determinative Bacteriology. 9lh ed. Williams & Wilkins, USA.
  • Hoog G.S., Guarro J., 1995, Atlas of Clinical Fungi. Centraalbureau voor Schimmelcultures & Universität Rovira and Virgili, Baarns, Reus.
  • Hughes J.B., Neale C.N., Ward CH., 2000, Bioremediation. In: Encyclopedia of Microbiology. Vol. 1. 2nd ed. Academic Press, 587-610.
  • Hund K., Traunspurger W., 1994, ECTOX-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site. Chemosphere 29, 371-390.Iqbal S., Khalid Z.M., Malik K.A., 1995, Enhanced biodégradation and emulsification of crude oil and hyperproduction of biosurfactants by a gamma ray-induced mutant of Pseudomonas aeruginosa. Lett. Appl. Microbiol. 21. 176-179.
  • IETU 1999, Instytut Ekologii Terenów Uprzemysłowionych. Bioremediation of Petroleum Hydrocarbon-contaminated Soil. Comprehensive Report.
  • ISO/FD1S 13877, 1998, Soil quality - Determination of PAHs - Method using high-performance liquid chromatography.
  • Jain D.K., Collins-Thompson D.L., Lee H., Trevors J.T., 1991, A drop-collapsing test for screening surfactant-producing microorganisms. J. Microbiol. Methods 13, 271-279.
  • Janssen CR., Snel, T. Peisoone G., 1993, Recent advances in rapid toxicity assessment methods and their application to marine biomonitoring. In: Proceedings of the Ecotoxicology Symposium, Curtin University, Perth, Australia, 124-136.
  • Jarvis F.G., Johanson M.J., 1949, A glycolipidproduced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71,4124-4126.
  • Jaskółka P., 1994, Jak powstaje skażenie gruntu i wód podziemnych produktami naftowymi? Paliwa Płynne 2, 22-23.
  • Joergensen R.G., Schmaedeke B., Windhorst K., Meyer B., 1995, Biomass and activity of microorganisms in a fuel-contaminted soil. Soil Biol. Biochem. 27, 1137-1143.
  • Johnsen A.R., Wick L.Y., Harms H., 2005, Principles of microbial PAH-degradation in soil. Environ. Poll. 133,71-84.
  • Johnson K., Ghosh S., 1998, Feasibility of anaerobic biodégradation of PAHs in dredged river sediments. Water Sci.Technol. 38, 41-48. Jorgensen K.S., 2000, Pustinen J., Sourtti A.M., Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles. Env. Poll. 107, 245-254.
  • Juvonen R., Martikainen E., Schultz E., Joutti A., Ahtiainen J., Lehtokaris M., 2000, A battery of toxicity tests as indicators of decontamination in composting oily waste. Ecotoxicol. Environ. Safety 47, 156-166.
  • Keddy C.J., Greene J.C, Bonnell M.A., 1995, Review of whole-organism biossays: Soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol. Environ. Safety 30, 221-251.
  • Kepner R.L., Pratt J.R., 1994, Use of fluorochromes for direct enumeration of total bacteria in environmental samples: Past and present. Microbiological Reviews (Dec), 603-615.
  • King R.B., Long G.M., Sheldon J.K., 1998, Practical Bioremediation. The Field Guide. Lewis Pub. Inc., Boca Raton.
  • Kiyohara H., Nagao K., Yana K., 1982, Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. App. Environ. Microbiol., 43,454-457.
  • Klein J., 2002, Biological soil treatment. In: Biotechnology for the environment: Soil remediation. Agathos S.N., Reineke W. (eds.). Kluwer Academic Publishers, 7-21.
  • Klimiuk E., Łebkowska M., 2005, Biotechnologia w ochronie środowiska. Wydawnictwo Naukowe PWN, Warszawa.
  • Kołwzan B., 2005, Bioremediacja gleb skażonych produktami naftowymi wraz z oceną ekotoksykologiczną. Prace Naukowe Instytutu Inżynierii Ochrony Środowiska Politechniki Wrocławskiej, Seria: Monografie 44, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • Korsak E., 1998, Przerób ropy naftowej w Petrochemii Płock S.A. do roku 2000. Nafta-Gaz 54, 535-541.
  • Kosaric N., 2000, Biosurfactants. Production. Properties. Applications. Marcel Dekker Inc., New York.
  • Kostecki P.T., Calabrese E.J., 1991, Hydrocarbon contaminated soils and grounwater. Analysis, Fate, Environmental and Public Health Effects. Remediation. Lewis Pub., Inc., Boca Raton.
  • Kozdrój J., Elsas van J.D., 2001, Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J. Microbiol. Methods 43, 197-212.
  • Latif M., Persoone G., Janssen C, DeCoen W., Svardal K., 1995, Toxicity of waste waters in Austria with conventional and cost-effective bioassys. Ecotox. Environ. Saf. 29, 28-36.
  • Latif M., Licek E., 2004, Toxicity assessment of wastewaters, river waters, and sediments in Austria using cost-effective microbiotests. Environ. Tox. 19, 302-309.
  • Leahy J.G., Colwell R.R., 1990, Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54, 305-315.
  • Lindstrom J.E., Braddock J.F., 2005, Assessment of hydrocarbons biodégradation potential using radiorespirometry. In: Manual of Soil Analysis. Monitoring and assessing soil bioremediation. Margesin R.. Schinner F. (eds.). Springer Verlag, Berlin-Heidelberg, 324-338. Loehr R.C., Martin J.H., Neuhauser E.F., 1992. Land treatment of an aged oil sludge-organic loss and change in soil characteristics. Water Res. 26, 805-815.
  • Łebkowska M., Karwowska E., Miaśkiewicz E., Muszyński A., 1997, Izolacja i identyfikacja bakterii z gruntów zanieczyszczonych produktami ropopochodnymi. Woda i Technika Sanitarna 2, 73-75.
  • Łebkowska M., Sztompka E., Muszyński A., Karwowska E., Miaśkiewicz-Pęska E., Lisik R., Wojtowicz J., 2000, Bioremediation of petroleum products contaminated soil. Proceedings of the Seventh International FZK/TNO Conference on Contaminated Soil, Leipzig, 1311-1313.
  • Łebkowska M., 2004, Biologiczne związki powierzchniowo-czynne i ich zastosowanie do oczyszczania gruntów z produktów naftowych. Biotechnologia 64,43-53.
  • Łebkowska M., Wojewódka D., Karwowska E., Manecki P., Wojtowicz J., 2004, Petroleum products biodégradation in soil from railway area in Kraków-Prokocim, Poland. Proceedings of the International Conference on bioremediation of soil and groundwater. Kraków, 5-8 września 2004, 13-18.
  • Łukasik K., Dziewięcka B., 1995, Oznaczanie wielopierścieniowych węglowodorów aromatycznych w próbkach środowiskowych metodą HPLC Z zastosowaniem kolumn i systemu SPE. IETU, Katowice.
  • MacNaughton S.J., Stephen J.R., Venosa A.D., Davis G.A., Chang Y.J. White D.C., 1999, Microbial population changes during bioremediation of experimental oil sill. Appl. Environ. Microbiol. 65, 3566-3574.
  • Maila M.P., Cloete T.E., 2005, The use of biological activities to monitor the removal of fuel contaminants - perspective for monitoring hydrocarbon contamination: a review. Int. Biodeter. Biodegrad. 55, 1-8.
  • Malina G.. Szczepański A., Malicki W., 1993, Zanieczyszczenia gruntów i wód podziemnych produktami naftowymi w Polsce. Stan i główne kierunki działań. Technika Poszukiwań Geologicznych. Geosynoptyka i Getermia 4, 67-72.
  • Margaritis A., Zajic J.E., Gerson D.F., 1979, Production and surface-active properties of microbial surfactants. Biotechnol. Bioeng. 21, 1151-1162.
  • Margesin R., Schinner F., 1998, Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47, 462-468.
  • Margesin R., Walder G., Schinner F., 2000a, The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol. 20, 313-333.
  • Margesin R., Zimmerbauer A., Schinner F., 2000b, Monitoring of bioremediation by soil biological activities. Chemosphere 40, 339-346.
  • Margesin R., 2005, Determination of enzyme activities in contaminated soil. In: Manual of Soil Analysis. Monitoring and assessing soil bioremediation. Margesin R., Schinner F. (eds.). Springer Verlag, Berlin-Heidelberg, 309-320.
  • Mathew M., Obbard J.P., 2001, Optimisation of the dehydrogenase assay for measurement of indigenous microbial activity in beach sediments contaminated with petroleum. Biotechnol. Letters, 23, 227-230.
  • McDaniels A.E., Reyes A.L., Wymer L.J., Rankin CC, Stelma G.N., 1990, Comparison of the Salmonella (Ames) test, umu test, and SOS chromotest for detecting genotoxins. Environ. Mol. Mutagen. 16, 204-215.
  • McDaniels A.E., Reyes A.L., Wymer L.J., Rankin C.C., Stelma G.N., 1993, Genotoxic activity detected in soils from a hazardous waste site by the Ames test and the SOS colorimetric test. Environmental and Molecular Mutagenesis 22, 115-22.
  • Mersch-Sudermann V., 1991. The SOS-chromo-spottest: Evaluation of a short-term test for the determination of genotoxic compounds in contaminated environmental samples. Int. J. Hyg. Environ. Med. 191, 36-45.
  • Meier J.R.. Chang L.W., Jacobs S.. Torsella J.. Meckes M., Smith M.K.. 1997, Use of plant and earthworm bioassays to evaluate remediation of soil from a site contaminated with PCB. Environ. Tox. Chem. 16, 928-938.
  • Mianowski Z., Płochniewski Z., 1991, Ocena zanieczyszczenia produktami naftowymi i zagrożenie dla gruntów i wód podziemnych w Polsce. Mat. sympozjum nt. Zanieczyszczenia wód podziemnych produktami naftowymi, 3-13, Częstochowa.
  • Mohn W., Radzimiński C.Z., Fortin M.C., Reimer K.J., 2001, On site bioremediation of hydrocarbon-contaminated Arctic tundra soils in inoculated biopiles. Appl. Microbiol. Biotech. 57, 242-247.
  • Morikova M., Hirata Y., Imanaka T., 2000, A study on the structure-function relationship of the lipopeptide biosurfactants. Biochim. Biophys. Acta 1488, 211-218.
  • Mulligan C.N., Cooper D.G., Neufeld R.J., 1984, Selection of microbes producing biosurfactants in media without hydrocarbons. J. Ferment. Technol. 62, 311-314.
  • Mulligan C.N., Yong R.N., Gibbs B.F., 2001. Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geology 60, 371-380.
  • Muyzer G., Hottentrager S., Teske A., Wawer C 1996, Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA - A new molecular approach to analyse the genetic diversity of mixed microbial communities. Mol. Microb. Ecol. Manual. 4, 1-23.
  • Muyzer G., Smalla K., 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Ant. Leeuw. 73. 127-141.
  • Muyzer G.. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opin. Microbiol. 2. 317-322.
  • Nalęcz-Jawecki G., Demkowicz-Dobrzański K.. Sawicki J., 1993. Protozoan Spirostomum ambiguum as a highly sensitive bioindicator for rapid and easy determination of water quality. Sci. Total. Environ. Supplement 1227-1234.
  • Nitschke M., Ferraz C, Pastore G.M., 2004, Selection of microorganisms for biosurfactant production using agroindustrial wastes. Braz. J. Microb. 35, 81-85.
  • Nitschke M., Pastore G.A., 2006, Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Biores. Technol. 97, 336-341.
  • Noah K.S., Fox S.L., Bruhn D.F., Thomson D.N., Bala G.A., 2002, Development of continuous surfactin production from potato process effluent by Bacillus subtilis in an airlift reactor. Appl. Biochem. Biotechnol. 98, 100-111.
  • Ochoa-Loza F.J., Artiola J.F., Miller-Maier R.M., 1998, Stability constants for the complexation of various metals with a rhamnolipid biosurfactant. Department of Soil, Wat. Environ. Sci., University of Arizona, 36-58.
  • Oda Y., Nakamura S-I., Oki I., Kato T., Shinagawa H., 1985, Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutation Research 147, 219-29.
  • Olańczuk-Neyman K., Peejzner J., Topolicki M., 1989, Chemiczna i bakteriologiczna ocena skażenia gruntów stacji przeładunku paliw produktami ropopochodnymi. Wydział Hydrotechniki. Politechnika Gdańska, 2, 50-59.
  • Olszanowski A., Sozański M.M., Urbaniak A., Voelkela A., 2001, Remediacja i bioremediacja zanieczyszczonych wód i gruntów oraz wykorzystanie modelowania i technik informatycznych w inżynierii środowiska. Wydawnictwo Politechniki Poznańskiej, Poznań.
  • Pieper D.H., Reineke W., 2000, Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11, 262-270.
  • PIOS (Państwowa Inspekcja Ochrony Środowiska), 1994, Wskazówki metodyczne do oceny stopnia zanieczyszczenia gruntów i wód podziemnych produktami ropopochodnymi i innymi substancjami chemicznymi w procesach rekultywacji. Warszawa.
  • Płaza G., Ulfig K„ Bevolo A., 1996, Comparison of immunoassay techniques for PAH and BTEX monitoring in soils from a Polish petroleum refinery. In: Preprints of Third International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe. Warsaw, 105-107.
  • Płaza G., Ulfig K., Bevolo A.J., 1999, Application of immunoassay techniques for determination of PAH, and BTEX in soil. Int. Environ. Tech. 9,25-26.
  • Plaza G., Ulfig K., Hazem T.C., Brigmon R.L., 2001, Use of molecular techniques in bioremediation. Acta Microb. Pol. 50, 205-218.
  • Płaza G., Ulfig K., Brigmon R., 2003a, Relationship between soil microbial diversity and bioremediation process at an oil refinery. Acta Microb. Pol. 52, 173-182.
  • Płaza G., Ulfig K., Nałęcz-Jawecki G., 2003b, Evaluation of ecotoxicity on hydrocarbon-bioremediated soil using plant bioassays and physicochemical parameters. In: ConSoil 2003, Proceedings of the 8'h International FZK/TNO Conference on Contaminated Soil. Annokkee G.J., Arendt F., Uhlmann O.(eds.). Forschungszentrum Karlsruhe GmbH, 2792-2800.
  • Płaza G.. Ulfig K., Malina G., Krzemińska B., Brigmon R.L., Worsztynowicz A., 2003c. Evaluation of bioremediation processes at the oil refinery in Czechowice-Dziedzice. In: Environmental Engineering Studies. Polish Research on the way to the EU. Pawłowski L., Dudzińska M., Pawłowski A. (eds.). Kluwer Academic Plenum Publishers, New York, 409-419.
  • Płaza G., Upchurch R., Brigmon R.L.. Whitman W.B., Ulfig K.. 2004a, Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Pol. J. Environm. Studies 13, 315-318.
  • Plaza G., Nałęcz-Jawecki G., Ulfig K., Sawicki J., Brigmon R.L., 2004b, Evaluation of leachates toxicity to assess the bioremediation progress. Fresenius Environ. Bull. 13, 532-536.
  • Płaza G., Ulfig K., Brigmon R.L., 2004c, Selekcja i izolacja bakterii wytwarzających biosurfaktanty z gruntów zanieczyszczonych związkami ropopochodnymi. Post. Mikrobiol. 43, Supl. 1, 475.
  • Płaza G., Ulfig K., Rzychoń D., Wypych J., Worsztynowicz A., Brigmon R.L., 2004d, TCE biodégradation In "interspecies hydrogen transfer" bioremediation model. Fresenius Environ. Bull. 13, 1151-1157.
  • Płaza G., Ulfig K., Tien A.J., 2005a, lmmunotechniques as a tool for detection of hydrocarbons. In: Manual of soil analysis. Monitoring and assessing soil bioremediation. Margesin R., Schinner F. (eds.). Springer Verlag, Berlin, Heidelberg, 121-130.
  • Płaza G., Nałęcz-Jawecki G., Ulfig K., Brigmon R.L., 2005b, The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59, 289-296
  • Płaza G., Nałęcz-Jawecki G., Ulfig K., Brigmon R.L., 2005c, Assessment of genotoxic activity of petroleum hydrocarbon-bioremedited soil. Ecotoxicol. Environ. Safety 62,415-420.
  • Płaza G., Ulfig K., Worsztynowicz A., Malina G., Krzemińska B., Brigmon R.L., 2005d, Respirometry for assessing the biodégradation of petroleum hydrocarbons. Environm. Technol. 26, 161-169.
  • Płaza G., Ulfig K., Brigmon R.L., 2005e, Surface active properties of bacterial strains isolated from petroleum hydrocarbon-bioremediated soil. Polish J. Microbiol. 54, 161-167.
  • Płaza G., Wypych J., Ulfig K., Brigmon R.L., 2005f, Biodegradacja węglowodorów aromatycznych typu BTEX przez bakterie produkujące substancje powierzchniowo-czynne (SPC). W: II Kongres Inżynierii Środowiska, Monografia nr 32, PAN, Komitet Inżynierii Środowiska, 901-908.
  • Płaza G., Zjawiony I., Banat I.. 2006, Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soil. J. Petrol. Sci. Eng. 50,71-77.
  • Power M., van der Meer J.R., Tchelet R., Egli T., Eggen R., 1998, Molecucilr-based methods can contribute to assessments of toxicological risks and bioremediation strategies. J. Microbiol. Methods 32, 107-119.
  • Prabhu Y., Phale P.S., 2003, Biodegradation of phenanthrene by Pseudomonas sp. strains PP2: novel metabolic pathway role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl. Microbiol. Biotechnol. 61, 343-351.
  • Prince R.C., 2002, Bioremediation: An oveniew of how microbiological processes can be applied to the cleanup or organic and inorganic environmental pollutants'. In: Encyclopedia of Environmental Microbiology. Vol. 2, Wiley, New York, 692-712
  • Quillardet P., Hofnung M., 1985, The SOS Chromotest, a colorimetric bacterial assay for genotoxins, procedures. Mutation Research 147, 65-78.
  • Quinn J.W., Reinhart D., 1997, Bioremediation of diesel contaminated soil using biopiles. Pract. Periodical. Haz. Tox. Radio. Waste Manag. 1, 18-25.
  • Rahman K.S.M., Rahman T.J., Lakshmanaperumalsamy P., Marchant R., Banat I.M., 2003, The potential of bacterial isolates for emulsification with a range of hydrocarbons. Acta Biotechnol., 23, 335—345.
  • Renoux A.Y., Tyagi R.D., Roy Y., Samson R., 1995, Ecotoxicological assessment of bioremediation of a petroleum soil. In: Microbial processes for bioremediation. Hinchee R.E., Brockman F.J., Vogel CM. (eds.). Battelle, Columbus, OH, USA, 259-264,.
  • Rheims H., Rainey F.A., Stackebrandt E., 1996, A molecular approach to search for diversity among bacteria in the environment. J. Ind. Microbiol. 17, 159-169.
  • Riser-Roberts E., 1998, Remediation of petroleum contaminated soils. Lewis Pub. Inc., Boca Raton.
  • Rocznik Statystyczny GUS, 2002, Warszawa.
  • Rocznik Statystyczny GUS, 2003. Warszawa.
  • Rogers S.L., McClure N., 2003, The role of microbial studies in bioremediation process optimization. In: Bioremediation: A critical Review. Head I.M., Singleton I., Milner M.G. (eds.), Antony Rowe Ltd, UK. 564-619.
  • Rombke J., Breure A.M., Mulder C. Rutgers M„ 2005. Legislation and ecological quality assessment of soil: implementaion of ecological indication systems in Europe. Ecotox. Environ. Saf. 62, 201-210.
  • Rombke J., Breure A.M., 2005, Status and outlook of ecological soil classification and assessment concepts. Ecotox. Environ. Saf. 62, 300-308.
  • Ron E.Z., Rosenberg E., 2002, Biosurfactants and oil bioremediation. Curr. Op. Biotechnol. 13, 249-252.
  • Rosenberg E., 1993, Microbial diversity as a source of useful biopolymers. J. Ind. Microbiol. 11, 131-137.
  • Rozp. M.S., 2002, Rozporządzenie Ministra Środowiska z dnia 9 września 2002 r. w sprawie standardów jakości gleb oraz standardów jakości ziemi. Dz. U. 02.165.1359 z dnia 4 października 2002 r. Rzychoń D., Worsztynowicz A., Adamski M., Iwaszenko S., Ulfig K., Łukasik K., Tien A., 2000, Bioremediacja gleby zanieczyszczonej ropopochodnymi w obecności związków powierzchniowo czynnych. Zeszyty Naukowe Politechniki Śląskiej, seria: Inżynieria Środowiska, z. 45, 183-193.
  • Ruf A., Beck L., Dreher P., Hund-Rinke K., Rombke J., Spelda J., 2005, A biological classification concept for the assessment of soil quality" ..biological soil classification scheme" (BBSK). Agricul. Eco. Environ. 98, 263-271.
  • Salanitro J.P., Dorn P.B., Huesemann M.H., Moore K.O., Rhodes I.A., Jackson L.M., Vipond T.E., Western M.M., Wiśniewski H.L., 1997, Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Technol. 31, 1769-1776.
  • Salanitro J.P., 2000, Oil pollution. In: Encyclopedia of Microbiology. Vol. 3. 2nd ed. Academic Press, 449-455.
  • Sambrook J., Fritsch E.F., Maniatis T., 2001, Molecular cloning: A laboratory manual. 3 ed. Cold Spring Harbor Laboratory Cold Spring Harbor, NY.
  • Saterbak A., Toy R.J., Wong D.C.L., McMain B.J., Williams M.P., Dorn P.B., Brzuzy LP., Chai E.Y., Salanitro J.P., 1999, Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment. Environ. Toxicol. Chem. 18, 1591-1607.
  • Saterbak A., Toy R.J., McMain B.J., Williams M.P., Dorn P.B., 2000, Ecotoxicological and analytical assessment of effects of bioremediation on hydrocarbon-containing soils. Environ. Toxicol. Chem. 19,2643-2652.
  • Sayler G.S., Layton A.C., 1990, Environmental application of nucleic acid hybridization. Annu. Rev. Microbiol. 44, 625-648.
  • Sayler G.S., Ripp S., 2000, Field application of genetically engineered microorganisms for bioremediation processes. Curr. Opin. Biotechnol. 11, 286-289.
  • Schlegel H.G., 2001, Mikrobiologia ogólna. Wydawnictwo Naukowe PWN, Warszawa.
  • Sigler L.. Carmichael J.W., 1976. Taxonomy of Malbranchea and some other Hyphomycetes with arthroconidia. Mycotaxon, 4. 349-488.
  • Słownik hydrogeologiczny. 1997, Kleczkowski A.S., Różkowski A. (red.). MOŚZNiL, Wyd. Trio, Warszawa.
  • Solaiman D.K.Y., Ashby R.D., Nunez A., Foglia T.A., 2004, Production of sophorolipides by Candida bombicola grown on soy molasses as substrate. Biotechnol. Letters 26, 1241-1245.
  • Sparkes A.H., Werret G., Stokes C.R., Gruffyd-Jones T.J., 1994, Improved sensitivity in the diagnosis of dermatophytes by fluorescence microscopy with Calcafluor white. Veterinary Record 134, 307-308.
  • Stapleton R.D., Ripp S., Jimenez L., Cheol-Koh S., Fleming J.T., Gregory I.R., Sayler G.S., 1998, Nucleic acid analytical approaches in bioremediation; site assessment and characterization. J. Microbiol. Methods 32, 165-178.
  • Stefan R.J., Atlas R.M., 1991, Polymerase chain reaction: Applications in Environmental Microbiology. Annu. Rev. Microbiol. 45, 137-152.
  • Surygała J., 1999, Dziś i jutro ropy naftowej. Przemysł Chemiczny 78. 123-126.
  • Surygała J., Śliwka E., 1999, Charakterystyka produktów naftowych w aspekcie oddziaływań środowiskowych. Chemia i Inżynieria Ekologiczna 6, 131-145.
  • Tan H.. Champion I.T., Artiola J.F.. Brusseau M.L., Miller R.M., 1994, Complexation of cadmium by a rhamnotipid biosurfactant. Environ. Sc. Tech. 28, 2042-2046.
  • Thomas J.M., Cline J.F., 1985, Modification of the techniques to assess toxicity of hazardous chemicals in soils. Environ. Toxicol. Chem. 4, 201-207.
  • Thomas D.N.. Fox S.L.. Bala G.A., 2000. Biosurfactants from potato process effluents. Appl. Biochem. Biotechnol. 84-86, 917-930. Thomassin-Lacroix E.J., Eriksson M., Reimer K.J., Mohn W.W., 2002. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl. Microbiol. Biotechnol. 59, 551-556.
  • Tsai Y.-L., Olson B.H., 1991, Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 56, 1070. Ulfig K., Plaza G., Hazen T.C., Fliermans C.B., Franek M.M., Lombard K.H., 1996, Bioremediation treatability and feasibility studies at a Polish petroleum refinery. In: Preprints of Third International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe. Warsaw, 363-365.
  • Ulfig K., Tien A., Płaza G., Worsztynowicz A., Hazen T., 1998, Microbiological changes in petroleum-contaminated soil during bioremediation at a Polish petroleum refinery. In: Preprints of Fourth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe, Warsaw.
  • Ulfig K., Płaza G., Mańko T., Krajewska J., Wypych J., Łukasik K., Dziewięcka B., 1998, Opracowanie i przetestowanie preparatów mikrobiologicznych przyspieszających rozkład węglowodorów ropopochodnych. Raport IETU (nieopublikowane).
  • Ulfig K., Plaza G., Worsztynowicz A., Mańko T., Krajewska J., Wypych J., Łukasik K., Dziewięcka B., 1999, Zastosowanie autoszczepionki do oczyszczania gleby zanieczyszczonej związkami ropopochodnymi zgromadzonej w dole kwasowym na terenie rafinerii „Czechowice" S.A. Raport IETU (nieopublikowane).
  • Ulfig K.. Płaza G., Tien A., Mańko T.. Krajewska J.. Wypych J., Łukasik K., Dziewięcka B.. Terakowski M., Worsztynowicz A., 2000, Microbiological changes in a biopile during bioremediation of hydrocarbon-contaminated soil at a Polish petroleum refinery. In: Preprints of Fifth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe, Prague, Czech Republic.
  • Ulfig K., Plaza G., Tien A.J.. Worsztynowicz A., Heitkamp M.A., Hazen T.C., 2001, Microbial aspects of bioremediation. International Contaminent & Remediation Technology Conference and Exhibition. 10-13 June 2001. Orlando, Florida.
  • Ulfig K.. Plaza G., Worsztynowicz A., Mańko T., Tien A.. Brigmon R.L., 2003, Kerutinolytic fungi as indicators of hydrocarbon contamination and bioremediation progress in a petroleum refinery. Pol. J. Environm. Studies 12, 245-250.
  • United Nations, Agenda 21, UN Doc. A, 1992.
  • Youssef N.H., Duncan K.E., Nagle D.P., Savager K.N., Knapp R.M., Mclnerney M.J., 2004, Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 56, 339-346.
  • Van der Walt J.P., 1970, Criteria and methods used in classification. In: The Yeasts: a taxonomic study. J. Lodder (ed.). Amsterdam, North-Holland, 102-138.
  • Van der Wielen C, Persoone G., Goyvaerts M.P., Neven B., Quaghebeur D., 1993, Toxicity of the effluents of three pharmaceutical companies as assessed with a battery of tests. Tribune de l'Eau 564, 19-29.
  • Vardor-Suhan F., Kosaric N., 2000, Biosurfactants. In: Encyclopedia of Microbiology, Vol. 1. 2nd ed. Academic Press, 618-635.
  • Vidali M., 2001, Bioremediation. An overview. Pure Appl. Chem. 73, 1163-1172.
  • Villatoro-Monzon W.R., Mesta-Howard A.M., Razo-Flores E., 2003, Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Sc. Technol. 48, 125-131.
  • Wang X.. Bartha. R., 1990, Effects of bioremediation on residues, activity, and toxicity in soil contaminated by fuel spills. Soil Biol. Biochem. 22, 501-505.
  • Wang W., 1991. Literature review on higher plants for toxicity testing. Water, Air & Soil Pollution 59, 381-400.
  • Warchatowska T.. 1999. Analiza zdarzeń mogących spowodować nadzwyczajne zagrożenie środowiska w 199H r. Informacja GIOŚ, Warszawa. Weisburger J.H., 1999, Carcinogenicity and mutagenicity testing, then and now. Mutation Res. 437, 105-112.
  • Willumsen P.A., Karlson U., 1997, Screening of bacteria isolated from PAH-contaminated soils for production of biosurfactants and bioemulsifiers. Biodegradation 7, 415-423.
  • Wilson S.C., Jones K.C., 1993, Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ. Poll. 81, 229-249.
  • Winding A., Hunde-Rinke K., Rutgers M., 2005, The use of microorganisms in ecological soil classification and assessment concepts. Ecotox. Environ. Saf. 62, 230-248.
  • Wintzingerode F.V., Gobel U.B., Stackebrandt E., 1997, Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21, 213-229.
  • Worsztynowicz A., Rzychoń D., Ulfig K., 2001, A project for reclamation of the second lagoon at the Czechowice-Dziedzice refinery. IETU, Katowice (nieopublikowane).
  • Worsztynowicz A., Rzychoń D., Siobowicz T., Iwaszenko S., Plaza G., Ulfig K., 2005, Ex-situ bioremediation of trichloroethylene (TCE) contaminated soil under anaerobic conditions. Archives Environ. Protection 31, 89-98.
  • Wypych J., Mańko T.. 2002, Determination of volatile organic compounds (VOCs) in water and soil using solid phase microextraction. Chem. Anal. 47, 507-512.
  • Zadroga B.. Olańczuk-Neyman K., 2001, Ochrona i rekultywacja podłoża gruntowego. Wydawnictwo Politechniki Gdańskiej, Gdańsk. Zajic J.E., Panchol C.J., 1976. Bioemulsifiers. CRC Crit. Rev. Microbiol. 5, 39-66.
  • Zobell CE, 1946, Action of microorganisms on hydrocarbons. Bact. Rev. 10, 1-49.
  • Zobell C.E, 1950, Assimilation of hydrocarbons by microorganisms. Adv. Enzymol. 10, 443-486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0087
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.