PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Photoluminescence studies of TM and RE doped oxides using diamond anvil cell

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present status of high-pressure research with the diamond anvil cell (DAC) is described, focusing mainly on use of this technique in optical spectroscopy. After a brief description of the history of the development of high-pressure measurements, the principles of DAC technique are described in more detail. Then different applications of this technique to high-pressure research are discussed, including optical spectroscopy, electrical measurements, X-ray diffractometry and other measurements. Results obtained for selected materials, with a view to illustrating the physics behind high-pressure phenomena, are presented and discussed. These include high-pressure luminescence studies of Cr3+ or Yb3+-doped lithium niobate crystal (LiNbO3) as well as Cr3+ and Nd3+-doped lanthanum lutetium gallium garnet crystal (La3Lu2Ga3O12). Finally, the boundary of high-pressure spectroscopy usefulness is shown. The example of such a case is the study of Cr3+-doped MgO-2.5Al2O3 non-stoichiometric green spinel.
Czasopismo
Rocznik
Strony
163--179
Opis fizyczny
Bibliogr. 66 poz.,
Twórcy
autor
  • Instytut of Physics, Polish Academy of Sciences, al. Lotników 32/46, 42-668 Warszawa, Poland
Bibliografia
  • [1] BLOCK S., PIERMARINI G., The diamond cell stimulates high-pressure research, Physics Today 29(9), 1976, pp. 44–7.
  • [2] JAYARAMAN A., Diamond anvil cell and high-pressure physical investigations, Reviews of Modern
  • [3] JAYARAMAN A., Ultrahigh pressures, Review of Scientific Instruments 57(6), 1986, pp. 1013–31.
  • [4] WEIR C.E., LIPPINCOTT E.R., VAN VALKENBURG A., BUNTING E.N., Journal of Research for the National Bureau of Standards A 63, 1959, p. 55.
  • [5] DUNSTAN D.J., SPAIN I.L., Technology of diamond anvil high-pressure cells. I. Principles, design and construction, Journal of Physics E: Scientific Instruments 22(11), 1989, pp. 913–23.
  • [6] SPAIN I.L., DUNSTAN D.J., The technology of diamond anvil high-pressure cells. II. Operation and use, Journal of Physics E: Scientific Instruments 22(11), 1989, pp. 923–33.
  • [7] KELLER R., HOLZAPFEL W.B., Diamond anvil device for X-ray diffraction on single crystals under pressures up to 100 kilobar, Review of Scientific Instruments 48(5), 1977, pp. 517–23.
  • [8] DUNSTAN D.J., SCHERRER W., Miniature cryogenic diamond-anvil high-pressure cell, Review of Scientific Instruments 59(4), 1988, pp. 627–30.
  • [9] SILVERA I.F., WIJNGAARDEN R.J., Diamond anvil cell and cryostat for low-temperature optical studies, Review of Scientific Instruments 56(1), 1985, pp. 121–4.
  • [10] PIERMARINI G.J., BLOCK S., BARNETT J.D., FORMAN R.A., Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar, Journal of Applied Physics 46(6), 1975, pp. 2774–80.
  • [11] MAO H.K., BELL P.M., SHANER J.W., STEINBERG D.J., Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, Journal of Applied Physics 49(6), 1978, pp. 3276–83.
  • [12] RUOFF A.L., WANAGEL J., High pressures on small areas, Science 198(4321), 1977, pp. 1037–8.
  • [13] GOLOPENTIA D.A., RUOFF A.L., Apparatus for high-pressure and low-temperature experiments, Review of Scientific Instruments 52(2), 1981, pp. 235–8.
  • [14] RUOFF A.L., XIA H., LUO H., VOHRA Y.K., Miniaturization techniques for obtaining static pressures comparable to the pressure at the center of the Earth: X-ray diffraction at 416 GPa, Review of Scientific Instruments 61(12), 1990, pp. 3830–3.
  • [15] RUOFF A.L., LUO H., VOHRA Y.K., The closing diamond anvil optical window in multimegabar research, Journal of Applied Physics 69(9), 1991, pp. 6413–6.
  • [16] RUOFF A.L., LUO H., Pressure strengthening: a possible route to obtaining 9 Mbar and metallic diamonds, Journal of Applied Physics 70(4), 1991, pp. 2066–70.
  • [17] RUOFF A.L., LUO H., VANDERBORGH C., VOHRA Y.K., Generating near-earth-core pressures with type-IIa diamonds, Applied Physics Letters 59(21), 1991, pp. 2681–2.
  • [18] CHRISTENSEN N.E., RUOFF A.L., RODRIGUEZ C.O., Pressure strengthening: a way to multimegabar static pressures, Physical Review B: Condensed Matter 52(13), 1995, pp. 9121–4.
  • [19] RUOFF A.L., RODRIGUEZ C.O., CHRISTENSEN N.E., Elastic moduli of tungsten to 15 Mbar, phase transition at 6.5 Mbar, and rheology to 6 Mbar, Physical Review B: Condensed Matter 58(6), 1998, pp. 2998–3002.
  • [20] AKELLA J., The diamond anvil cell: probing the behavior of metals under ultrahigh pressures, Science and Technology Review, March 1996, pp. 17–27.
  • [21] HEMLEY R.J., ASHCROFT N.W., The revealing role of pressure in the condensed matter sciences, Physics Today 51(8), 1998, pp. 26–32. Photoluminescence studies of TM and RE doped oxides... 177
  • [22] MÜLLER H., TROMMER R., CARDONA M., VOGL P., Pressure dependence of the direct absorption edge of InP, Physical Review B: Condensed Matter 21(10), 1980, pp. 4879–83.
  • [23] VENKATESWARAN U., CHANDRASEKHAR M., CHANDRASEKHAR H.R., VOJAK B.A., CHAMBERS F.A., MEESE J.M., High-pressure studies of GaAs-Ga1–x AlxAs quantum wells of widths 26 to 150 A, Physical Review B: Condensed Matter 33(12), 1986, pp. 8416–23.
  • [24] DI HONG R., JENKINS D.W., REN S.Y., DOW J.D., Hydrostatic-pressure dependencies of deep impurity levels in zinc-blende semiconductors, Physical Review B: Condensed Matter 38(17), 1988, pp. 12549–55.
  • [25] PERLIN P., TRZECIAKOWSKI W., LITWIN-STASZEWSKA E., MUSZALSKI J., MICOVIC M., The effect of pressure on the luminescence from GaAs/AlGaAs quantum wells, Semiconductor Science and Technology 9(12), 1994, pp. 2239–46.
  • [26] KIM S., HERMAN I.P., TUCHMAN J.A., DOVERSPIKE K., ROWLAND L.B., GASKILL D.K., Photoluminescence from wurtzite GaN under hydrostatic pressure, Applied Physics Letters 67(3), 1995, pp. 380–2.
  • [27] AKAMARU H., ONODERA A., ENDO T., MISHIMA O., Pressure dependence of the optical-absorption edge of AlN and graphite-type BN, Journal of the Physics and Chemistry of Solids 63(5), 2002, pp. 887–94.
  • [28] SUSKI T., TEISSEYRE H., ŁEPKOWSKI S.P., PERLIN P., KITAMURA T., ISHIDA Y., OKUMURA H., CHICHIBU S.F., Different pressure coefficients of the light emission in cubic and hexagonal InGaN/GaN quantum wells, Applied Physics Letters 81(2), 2002, pp. 232–4.
  • [29] LI S.X., WU J., HALLER E.E., WALUKIEWICZ W., SHAN W., LU H., SCHAFF W.J., Hydrostatic pressure dependence of the fundamental bandgap of InN and in-rich group III nitride alloys, Applied Physics Letters 83(24), 2003, pp. 4963–5.
  • [30] ANCEAU S., LEFEBVRE P., SUSKI T., LEPKOWSKI S.P., TEISSEYRE H., DMOWSKI L.H., KONCZEWICZ L., KAMIŃSKA A., SUCHOCKI A., HIRAYAMA H., AOYAGI Y., Surprisingly low built-in electric fields in quaternary AlInGaN heterostructures, Physica Status Solidi A 201(2), 2004, pp. 190–4.
  • [31] FRANSSEN G., KAMIŃSKA A., SUSKI T., SUCHOCKI A., KAZLAUSKAS K., TAMULAITIS G., ZUKAUSKAS A., CZARNECKI R., TEISSEYRE H., PERLIN P., LESZCZYNSKI M., BOĆKOWSKI M., GRZEGORY I., GRANDJEAN N., Observation of localization effects in InGaN/GaN quantum structures by means of the application of hydrostatic pressure, Physica Status Solidi B 241(14), 2004, pp. 3285–92.
  • [32] KOTTKE T., WILLIAMS F., Pressure dependence of the alexandrite emission spectrum, Physical Review B: Condensed Matter 28(4), 1983, pp. 1923–7.
  • [33] DOLAN J.F., KAPPERS L.A., BARTRAM R.H., Pressure and temperature dependence of chromium photoluminescence in K2NaGaF6:Cr3+, Physical Review B: Condensed Matter 33(10), 1986, pp. 7339–41.
  • [34] EGGERT J.H., GOETTEL K.A., SILVERA I.F., Ruby at high pressure. I. Optical line shifts to 156 GPa, Physical Review B: Condensed Matter 40(8), 1989, pp. 5724–32.
  • [35] EGGERT J.H., GOETTEL K.A., SILVERA I.F., Ruby at high pressure. II. Fluorescence lifetime of the R line to 130 GPa, Physical Review B: Condensed Matter 40(8), 1989, pp. 5733–8.
  • [36] DUCLOS S.J., VOHRA Y.K., RUOFF A.L., Pressure dependence of the 4T2 and 4T1 absorption bands of ruby to 35 GPa, Physical Review B: Condensed Matter 41(8), 1990, pp. 5372–81.
  • [37] WAMSLEY P.R., BRAY K.L., The effect of pressure on the luminescence of Cr3+:YAG, Journal of Luminescence 59(1–2), 1994, pp. 11–7.
  • [38] FREIRE P.T.C., PILLA O., LEMOS V., Pressure-induced level crossing in KZnF3:Cr3+, Physical Review B: Condensed Matter 49(13), 1994, pp. 9232–5.
  • [39] WAMSLEY P.R., BRAY K.L., The effect of pressure on energy transfer in Cr3+:Tm3+:YAG, Journal of Luminescence 63(1–2), 1995, pp. 31–9.
  • [40] HÖMMERICH U., BRAY K.L., Direct observation of anticrossing behavior in a luminescent Cr3+-doped system, Physical Review B: Condensed Matter 51(13), 1995, pp. 8595–8.
  • [41] HÖMMERICH U., BRAY K.L., High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12, Physical Review B: Condensed Matter 51(18), 1995, pp. 12133–41.
  • [42] KAMIŃSKA A., DMOCHOWSKI J.E., SUCHOCKI A., GARCIA-SOLE J., JAQUE F., ARIZMENDI L., Luminescence of LiNbO3 :MgO,Cr crystals under high pressure, Physical Review B: Condensed Matter 60(11), 1999, pp. 7707–10.
  • [43] KAMIŃSKA A., SUCHOCKI A., GRINBERG M., GARCIA-SOLE J., JAQUE F., ARIZMENDI L., High-pressure spectroscopy of LiNbO3:MgO,Cr3+ crystals, Journal of Luminescence 87–89, 2000, pp. 571–3.
  • [44] KAMIŃSKA A., SUCHOCKI A., ARIZMENDI L., CALLEJO D., JAQUE F., GRINBERG M., Spectroscopy of near-stoichiometric LiNbO3 :MgO,Cr crystals under high pressure, Physical Review B: Condensed Matter 62(16), 2000, pp. 10802–11.
  • [45] BUNGENSTOCK C., TRÖSTER T., HOLZAPFEL W.B., Effect of pressure on free-ion and crystal-field parameters of Pr3+ in LOCl (L=La, Pr, Gd), Physical Review B: Condensed Matter 62(12), 2000,pp. 7945–55.
  • [46] SHEN Y., RIEDENER T., BRAY K.L., Effect of pressure and temperature on energy transfer between Cr3+ and Tm3+ in Y3Al5O12, Physical Review B: Condensed Matter 61(17), 2000, pp. 11460–71.
  • [47] KAMIŃSKA A., KACZOR P., DURYGIN A., SUCHOCKI A., GRINBERG M., Low-temperature high-pressure spectroscopy of lanthanum lutetium gallium garnet crystals doped with Cr3+ and Nd3+, Physical Review B: Condensed Matter and Materials Physics 65(10), 2002, pp. 104106/1–8.
  • [48] KAMIŃSKA A., SUCHOCKI A., GOŚCIŃSKI K., DOBACZEWSKI L., DEREŃ P.J., STRĘK W., High-pressure spectroscopy of Cr3+ doped MgO-2.5Al2O3 non-stoichiometric green spinel, Journal of Alloys and Compounds 341, 2002, pp. 193–6.
  • [49] KAMIŃSKA A., ARIZMENDI L., BARCZ A., ŁUSAKOWSKA E., SUCHOCKI A., Cr3+ ions in hydrogenated and proton exchanged lithium niobate crystals, Physica Status Solidi A 201(2), 2004, pp. 298–303.
  • [50] GRYK W., KUKLIŃSKI B., GRINBERG M., MALINOWSKI M., High pressure spectroscopy of Pr3+ in LiNbO3, Journal of Alloys and Compounds 380(1–2), 2004, pp. 230–4.
  • [51] GRYK W., DYL D., RYBA-ROMANOWSKI W., GRINBERG M., Spectral properties of LiTaO3:Pr3+ under high hydrostatic pressure, Journal of Physics: Condensed Matter 17(35), 2005, pp. 5381–95.
  • [52] RAMIREZ M., BAUSA L., BIERNACKI S.W., KAMIŃSKA A., SUCHOCKI A., GRINBERG M., Influence of hydrostatic pressure on radiative transition probability of the intrashell 4f transitions in Yb3+ ions in lithium niobate crystals, Physical Review B: Condensed Matter and Materials Physics 72(22), 2005, pp. 224104-1–5.
  • [53] TAKEMURA K., SYASSEN K., High pressure equation of state of rubidium, Solid State Communications 44(8), 1982, pp. 1161–4.
  • [54] KUNTSCHER C.A., FRANK S., LOA I., SYASSEN K., YAMAUCHI T., UEDA Y., Infrared properties of the quasi-one-dimensional superconductor beta -Na0.33V2O5 under pressure, Physical Review B: Condensed Matter and Materials Physics 71(22), 2005, pp. 220502-1–4.
  • [55] MACFARLANE P.I., HOLLIDAY K., NICHOLLS J.F.H., HENDERSON B., Characterization of Cr3+ centres in LiNbO3 using fluorescence line narrowing, Journal of Physics: Condensed Matter 7(49), 1995, pp. 9643–56.
  • [56] GRACHEV V., MALOVICHKO G., EPR, ENDOR, and optical-absorption study of Cr3+ centers substituting for niobium in Li-rich lithium niobate crystals, Physical Review B: Condensed Matter 62(12), 2000, pp. 7779–90, and references therein.
  • [57] BIERNACKI W., KAMIŃSKA A., SUCHOCKI A., ARIZMENDI L., Nephelauxetic effect in LiNbO3:Cr3+crystals, Applied Physics Letters 81(3), 2002, pp. 442–4.
  • [58] SUCHOCKI A., BIERNACKI S.W., KAMIŃSKA A., ARIZMENDI L., Nephelauxetic effect in luminescence of Cr3+-doped lithium niobate and garnets, Journal of Luminescence 102–103, 2003, pp. 571–4.
  • [59] GRINBERG M., FELICI A.C., PAPA T., PIACENTINI M., Nonradiative processes in the Zn1–xCoxSe system, Physical Review B: Condensed Matter 60(12), 1999, pp. 8595–601.
  • [60] MONTOYA E., SANZ-GARCIA J.A., CAPMANY J., BAUSÁ L.E., DIENING A., KELLNER T., HUBER G., Continuous wave infrared laser action, self-frequency doubling, and tunability of Yb3+:MgO:LiNbO3, Journal of Applied Physics 87(9), 2000, pp. 4056–62. Photoluminescence studies of TM and RE doped oxides... 179
  • [61] CHÉNAIS S., DURON F., BALEMBOIS F., GEORGES P., BRENIER A., BOULON G., Diode-pumped Yb:GGG laser: comparison with Yb:YAG, Optical Materials 22(2), 2003, pp. 99–106.
  • [62] STRĘK W., DEREŃ P., JEŻOWSKA-TRZEBIATOWSKA B., The nature of Cr(III) luminescence in MgAl2O4 spinel, Journal of Luminescence 40–41, 1988, pp. 421–2.
  • [63] GARAPON C., MANAA H., MONCORGÉ R., Absorption and fluorescence properties of Cr3+ doped nonstoichiometric green spinel, Journal of Chemical Physics 95(8), 1991, pp. 5501–12.
  • [64] JASSEMNEJAD B., SUCHOCKI A., POWELL R.C., STRĘK W., DEREŃ P., Optical spectroscopy and light -induced gratings in Cr3+ doped non-stoichiometric magnesium spinel, Chemical Physics 165(1), 1992, pp. 147–54.
  • [65] DEREŃ P.J., MALINOWSKI M., STRĘK W., Site selection spectroscopy of Cr3+ in MgAl2O4 green spinel, Journal of Luminescence 68(2–4), 1996, pp. 91–103.
  • [66] GARAPON C., BRENIER A., MONCORGÉ R., Site-selective optical spectroscopy of Cr3+ doped non-stoichiometric green spinel MgO-2.6Al2O3, Optical Materials 10(3), 1998, pp. 177–89.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0059
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.