PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of nanostructured Tb3+-doped yttrium aluminium garnets by the glycol route

Identyfikatory
Warianty tytułu
Konferencja
Sol-Gel Materials Research, Technology, Applications SGM'04, 6-11 june 2004
Języki publikacji
EN
Abstrakty
EN
Terbium-doped nanocrystalline yttrium aluminium garnet phases, Y3Al5O12:Tb3+ (YAG:Tb3+), were obtained by using rare-earth nitrates as the starting materials, together with citric acid and ethylene glycol according to the Pechini method. Thermogravimetric and differential thermal analysis were used to study the thermal decomposition of the precursor gels and the formation of nanocrystalline YAG:Tb3+. An increase in garnet nanocrystallite size from 20 to 40 nm with annealing temperature increasing from 800 to 1160 °C was evidenced with X-ray powder diffraction measurements. The intensity as well as the decay times of both 5D3 and 5D4 emissions of Y3Al5O12:Tb3+ were not found to depend on annealing and were thus independent of crystal size.
Słowa kluczowe
Wydawca
Rocznik
Strony
261--268
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
autor
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
  • Department of Chemistry, University of Turku, Turku, Finland
autor
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
autor
  • Department of Chemistry, University of Turku, Turku, Finland
Bibliografia
  • [1] SHINOYA S., YEN W.M., Phosphor Handbook, CRC Press, Boca Raton, 1998.
  • [2] ZHOU Y.H., LIN J., WANG S.B., ZHANG H.J., Opt. Mater., 20 (2002), 13.
  • [3] CHOE J.Y., RAVICHANDRAN D., BLOMQUIST S.M., KIRCHNER K.W., FORSYTHE E.W., MORTON D.C., J. Lumin., 93 (2001), 119.
  • [4] IKESUE A., FURUSATO I., KAMATA K., J. Amer. Ceram. Soc., 78 (1995), 225.
  • [5] IKESUE A., KINOSHITA T., KAMATA K., YOSHIDA K., J. Amer. Ceram. Soc., 78 (1995), 1033.
  • [6] LU J., UEDA K., YAGI H., YANAGITANI T., AKIYAMA Y., KAMINSKII A.A., J. Alloys Comp., 341 (2002), 220.
  • [7] GRESKOVICH C., CHERNOCH J.P., J. Appl. Phys., 44 (1973), 4599.
  • [8] WANG H., GAO L., NIIHARA K., Mater. Sci. Eng. A, 288 (2000), 1.
  • [9] PILLAI K.T., KAMAT R.V., VAIDYA V.N., SOOD D.D., Mater. Chem. Phys., 44 (1996), 255.
  • [10] VAQUEIRO P., LÓPEZ-QUINTELA M.A., J. Mater. Chem., 8 (1998), 161.
  • [11] SHIKAO S., JIYE W., J. Alloys Comp., 327 (2001), 82.
  • [12] ROY S., WANG L., SIGMUND W., ALDINGER F., Mater. Lett., 39 (1999), 138.
  • [13] MCKITTRICK J., SHEA L.E., BACALSKI C.F., BOSZE E.J., Displays, 19 (1999), 169.
  • [14] INOUE M., OTSU H., KOMINAMI H., INUI T., J. Alloys Comp., 226 (1995), 146.
  • [15] PARK C.-H.., PARK S.-J., YU B.-Y., BAE H.-S., KIM C.-H.., PYUN C.-H., GUANG-YAN H., J. Mater. Sci. Lett., 19 (2000), 335.
  • [16] UNFRIED P., Thermochim. Acta, 303 (1997), 119.
  • [17] MOSCARDINI D’ASSUNÇÃO L., IONASHIRO M., RASERA D.E., GIOLITO I., Thermochim. Acta, 219 (1993), 225.
  • [18] HRENIAK D., STRĘK W., MAZUR P., PAZIK R., ZĄBKOWSKA-WACŁAWEK M., Opt. Mater. 26 (2004), 117.
  • [19] HRENIAK D., STRĘK W., MAZUR P., Mater. Sci., 20 (2002), 39.
  • [20] WENDLANDT W.W., BEAR J.L., J. Inorg. Nucl. Chem., 12 (1960), 276.
  • [21] HÖLSÄ, J., TURKKI, T., Thermochim. Acta, 190 (1991), 335.
  • [22] KLUG P., ALEXANDER L.E., X-Ray Diffraction Procedure, Wiley, New York, 1954, Chapt. 9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.