Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Sol-Gel Materials Research, Technology, Applications SGM'04, 6-11 june 2004
Języki publikacji
Abstrakty
Hydrostatic extrusion was used as a method for grain refinement in technically pure aluminium andin an aluminium alloy. Both materials were deformed up to a true strain of ~4. Such a deformation resulted in substantial grain size refinement to below 1 žm in aluminium and below 100 nm in the aluminium alloy. In pure aluminium, microstructure evolution proceeds by a continuous increase in the grain boundary misorientation, without changing the grain size. In the aluminium alloy, which has lower stacking fault energy, grains continuously decrease in size, down to the nanometre scale. As a consequence of such microstructure evolutions, the mechanical properties of pure aluminium remain almost constant within a wide range of strains, whereas the mechanical properties of the aluminium alloy are significantly improved. From the present study, one can conclude that hydrostatic extrusion can offer an alternative way to produce nano-metallic elements made of aluminium alloys for light-weight applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
279--286
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ołoska 141, 02-507 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ołoska 141, 02-507 Warsaw, Poland
autor
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Materials Science and Engineering, ołoska 141, 02-507 Warsaw, Poland
Bibliografia
- [1] VALIEV R.Z., ISLAMGALIEV R.K., ALEXANDROV I.V., Progr. in Mat. Sci., 45 (2000), 103.
- [2] SEGAL V.M., Mater. Sci. Eng., A197 (1995), 157.
- [3] HORITA Z., FUJINAMI T., NEMOTO M., LANGDON T.G., J. Mat. Proc. Techn., 117 (2001), 288.
- [4] ZHILYAEV A.P., LEE S., NURISLAMOVA G.V., VALIEV R.Z., LANGDON T.G., Scripta Mater., 44 (2001), 2753.
- [5] KORZNIKOV A.V., PAKIELA Z., KURZYDLOWSKI K.J., Scripta Mater., 45 (2001), 309.
- [6] IWAHASHI Y., HORITA Z., NEMOTO M., LANGDON T.G., Acta Mater., 46 (1998), 3317.
- [7] ZHILAYAEV A.P., KIM B.-K., NURISLAMOVA G.V., BARO M.D., SZPUNAR J.A., LANGDON T.G., Scripta Mater., 46 (2002), 575.
- [8] SAITO Y., UTSUNOMIYA H., TSUJI N., SAKAI T., Acta Mater., 47 (1999), 579.
- [9] RICHERT M., LIU Q., HANSEN N., Mat. Sci. Eng., A260 (1999), 275.
- [10] HUANG J.Y., ZHU Y.T., JIANG H., LOWE T.C., Acta Mater., 49 (2001), 1497.
- [11] LIU Q., HUANG X., LLOYD D.J., HANSEN N., Acta Mater., 50 (2002), 3789.
- [12] STYCZYŃSKI L., PACHLA W.,WOJCIECHOWSKI S., Metal Sci., 16 (1982), 525.
- [13] LEWANDOWSKA M., GARBACZ H., PACHLA W., MAZUR A., KURZYDLOWSKI K.J., Solid State Phenomena, 101–102 (2005), 65.
- [14] Mechanical Behaviour of Materials Under Pressure, H. Li Pugh (Ed.), Elsevier, Amsterdam, 1970.
- [15] SUN P.L., YU C.Y., KAO P.W., CHANG C.P., Scripta Mater., 47 (2002), 377.
- [16] CAO W.Q., GODFREY A., LIU Q., Mat. Sci. Eng., A361 (2003), 9.
- [17] HASEGAWA H., KOMURA S., UTSUNOMIYA A., HORITA Z., FURUKAWA M., NEMOTO M., LANGDON T.G., Mat. Sci. Eng., A265 (1999), 188.
- [18] MORRIS D.G.,MORRIS M.A., Acta Mater., 50 (2002), 4047.
- [19] CABIBBO M., EVANGELISTA E., LATINI V., NES E., TANGEN S., Mat. Sci. Forum, 426–432 (2003), 2673.
- [20] HUGHES D.A., HANSEN N., Acta Mater., 45 (1997), 3871.
- [21] MURAYAMA M., HORITA Z., Hono K., Acta Mater., 49 (2001), 21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW7-0002-0018