PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

High resolution x-ray tomography as a tool for analysis of internal textures in meteorites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A comparison of internal textures of the NWA-5929, Ghubara and Pułtusk chondrites has been carried out using high resolution X-ray tomography. This is a powerful, non-destructive technique that allows on to determine textural and compositional dierences that occur between ordinary chondrites of various groups by means of grey-levels calehistograms, first-order statistics, and 3D imaging. Deformational structures in the Pułtusk meteorite such as cataclastic zones, impact melt clasts, melt veins, and melt pockets are observed and studied. Measurements of metal particle size are achieved, giving even deeper insight into textural features of meteorite. My approach shows that as shock deformation occurred, numerous small metal grains became progressively dispersed within the volume of the deformed Pułtusk meteorite rock. Simultaneously, metal was mobilized via frictional or direct impact melting to form scarce large metal nodules or grains arranged along the margins of relict chondritic clasts or as components of irregular injection veining. The possibility of tracing of these impact related processes by using tomography micrograms (without breaking the sample) is very useful for distinguishing which parts of each meteorite were deformed in diferent ways in order to make first order observations regarding the deformational history of these meteorites.
Czasopismo
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Polish Academy of Sciences, Institute of Geological Sciences, ul. Podwale 75, 50-449 Wrocław, Poland
Bibliografia
  • 1. Binns R.A., 1967 – Cognate xenoliths in chondritic meteorites: examples in Mezo-Madras and Ghubara. Geochimica et Cosmochimica Acta, 32 (3), 299–317.
  • 2. Brearley A.J., Jones R.H., 1998 – Chondritic meteorites. [in:] Planetary Materials, Rev. in Min., 36 (ed. J.J. Papike), 3-1–3-398.
  • 3. Carlson W.D., 2006 – Tree-dimensional imaging of earth and planetary materials. Earth and Planetary Science Letters, 249 (3-4), 133–147.
  • 4. Duliu O.G., 1999 – Computer axial tomography in geosciences: an overview. Earth-Science Reviews, 48 (4), 265–281.
  • 5. Ebel D.S., Weisberg M.K., Hertz J., Campbell A.J., 2008 – Shape, metal abundance, chemistry, and origin of chondrules in Renazzo (CR) chondrite. Meteoritics & Planetary Science, 43 (10), 1725–1740.
  • 6. Friedrich J.M., 2008 – Quantitative methods for three-dimensional comparison and petrographic description of chondrites. Computers & Geosciences 34 (12), 1926–1935.
  • 7. Hezel D.C., Needham A.W., Armytage R., Georg B., Abel R., Kurahashi E., Coles B.J., Rehkaemper M., Russell S.S., 2010 – A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites. Earth and Planetary Science Letters, 275 (1–2), 132–180.
  • 8. Ketcham R.A., 2005 – Tree dimensional grain fabric measurement using high-resolution X-ray computed tomography. Journal of Structural Geology, 27 (7), 1217–1228.
  • 9. Ketcham R.A., Carlson W.D., 2001 – Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Computers & Geosciences, 27 (4), 381–400.
  • 10. Kondo M., Tsuchiyama A., Hirai H., Koishikawa A., 1997 – High resolution X-ray computed tomographic (CT) images of chondrites and chondrules. Antarctic Meteorite Research, 10, 437–447.
  • 11. Krzesińska A., 2010a – Polyphase deformation of the Pułtusk meteorite. Meteoryt, 75 (3), 3–6 (in Polish).
  • 12. Krzesinska A., 2010b – Oblique impact-induced (shock-related) shearing and frictional melting in Pultusk (H5) chondrite. 41st Lunar and Planetary Science Conference. Abstract #1140. CD-ROM.
  • 13. Krzesińska A., Siemiątkowski J., 2011 – Evidence for multiple deformational brecciation and impact melting in chondrites from the Jacek Siemiątkowski collection. Przegląd Geologiczny, 59 (8), 576–588 (in Polish with English summary).
  • 14. Kuebler K.E., McSween H.Y., Carlson W.D., Hirsch D., 1999 – Sizes and masses of chondrules and metal-troilite grains in ordinary chondrites: possible implications for nebular sorting. Icarus, 141 (1), 96–106.
  • 15. Manecki A., 1972 – Mineralogical-petrographic study of the Pułtusk meteorite. Prace Mineralogiczne PAN, 27, 53–69 (in Polish).
  • 16. Masuda A., Taguchi I., Tanaka K., 1986 – Non-destructive analysis of meteorites by using a high-energy X-ray scanner. Papers presented to the 11th Symposium on Antarctic Meteorites. March 25–27, 1986. Tokyo, Nat. Inst. Polar. Res., 148-149.
  • 17. Nakamura T., Noguchi T., Tsuchiyama A., Ushikubo T., Kita N., Valley J.W., Zolensky M.E., Kakazu Y., Sakamoto K., Mashio E., Uesugi K., Nakano T., 2008 – Chondrule like objects in short period comet 81P/Wild 2. Science, 321 (5896), 1664–1667.
  • 18. Nettles J.W., Mc Sween Jr. H.Y., 2006 – A comparison of metaltroilite grain size distribution for type 3 and type 4 ordinary chondrites using X-ray CT data. Lunar and Planetary Sciences Conference XXXVII, abstract #1996.
  • 19. Okazawa T., Tsuchiyama A., Yano H., Noguchi T., Osawa T., Nakano T., Uesugi K., 2002 – Measurement of densities of Antarctic micrometeorites using X-ray microtomography. Antarctic Meteorites, 9, 79–96.
  • 20. Petrou M., García Sevilla P., 2006 – Image Processing: dealing with Texture. Wiley, New York. 618.
  • 21. Rubin A.E., 1992 – A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites. Geochimica et Cosmochimica Acta, 56 (4), 1705–1714.
  • 22. Rubin A.E., Ulff-MøllerF.,WassonJ.,CarlsonW.D.,2001–The Portales Valley meteorite breccia: Evidence for impact-induced melting and metamorphism of an ordinary chondrite. Geochimica et Cosmochimica Acta, 65 (2), 323–342.
  • 23. Tsuchiyama A., Nakamura T., Nakano T., Nakamura N., 2002 – Tree-dimensional description of Kobe meteorite by micro X-ray CT method: possibility of three-dimensional curation of meteorite samples. Geochemical Journal, 36 (4), 369–390.
  • 24. StöfflerD.,KeilK.,ScottE.R.D.,1991– Shock metamorphism of ordinary chondrites. Geochimica et Cosmochimica Acta, 55 (12), 3845–3867.
  • 25. Uesugi M., Uesugi K., Oka M., 2010 – Non-destructive observation of meteorite chips using quantitative analysis of optimized X-ray micro-computed tomography. Earth and Planetary Science Letters, 299 (3-4), 359–367.
  • 26. van der Bogert C.H., Schultz P.H., Spray J.G., 2003 – Impact-induced melting in ordinary chondrites: a mechanism for deformation, darkening, and vein formation. Meteoritics & Planetary Science, 38 (10), 1521–1531.
  • 27. Van Schmuss W.R., Wood J.A., 1967 – A chemical–petrologic classification for the chondritic meteorites. Geochimica et Cosmochimica Acta, 31 (5), 747–765.
  • 28. Vinogradov A.P., Vdovykin G.P, 1963 – Diamonds in stony meteorites. Geochemistry, 8, 743-750.
  • 29. Żbik M., Self P., 2005 – High resolution X-ray microtomography analysis in non-destructive investigation of internal structure in two chondrites. Mineralogia Polonica, 36 (1), 5–19.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPW6-0026-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.